Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Coherent randomness tests and computing the K-trivial sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10325909" target="_blank" >RIV/00216208:11320/16:10325909 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.4171/JEMS/602" target="_blank" >http://dx.doi.org/10.4171/JEMS/602</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/JEMS/602" target="_blank" >10.4171/JEMS/602</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Coherent randomness tests and computing the K-trivial sets

  • Popis výsledku v původním jazyce

    We introduce Oberwolfach randomness, a notion within Demuth's framework of statistical tests with moving components; here the components' movement has to be coherent across levels. We show that a ML-random set computes all K-trivial sets if and only if it is not Oberwolfach random, and indeed there is a K-trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the Lebesgue density theorem and Doob's martingale convergence theorem. We also show that random sets which are not Oberwolfach random satisfy highness properties (such as LR-hardness) which mean they are close to computing the halting problem. A consequence of these results is that a ML-random set failing the effective version of Lebesgue's density theorem for closed sets must compute all K-trivial sets. Combined with a recent result by Day and Miller, this gives a positive solution to the ML-covering problem of algorithmic randomness. On the other hand these results settle stronger variants of the covering problem in the negative: no low ML-random set computes all K-trivial sets, and not every K-trivial set is computable from both halves of a random set.

  • Název v anglickém jazyce

    Coherent randomness tests and computing the K-trivial sets

  • Popis výsledku anglicky

    We introduce Oberwolfach randomness, a notion within Demuth's framework of statistical tests with moving components; here the components' movement has to be coherent across levels. We show that a ML-random set computes all K-trivial sets if and only if it is not Oberwolfach random, and indeed there is a K-trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the Lebesgue density theorem and Doob's martingale convergence theorem. We also show that random sets which are not Oberwolfach random satisfy highness properties (such as LR-hardness) which mean they are close to computing the halting problem. A consequence of these results is that a ML-random set failing the effective version of Lebesgue's density theorem for closed sets must compute all K-trivial sets. Combined with a recent result by Day and Miller, this gives a positive solution to the ML-covering problem of algorithmic randomness. On the other hand these results settle stronger variants of the covering problem in the negative: no low ML-random set computes all K-trivial sets, and not every K-trivial set is computable from both halves of a random set.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of the European Mathematical Society

  • ISSN

    1435-9855

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    40

  • Strana od-do

    773-812

  • Kód UT WoS článku

    000371990000003

  • EID výsledku v databázi Scopus

    2-s2.0-84961839155