Coherent randomness tests and computing the K-trivial sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10325909" target="_blank" >RIV/00216208:11320/16:10325909 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4171/JEMS/602" target="_blank" >http://dx.doi.org/10.4171/JEMS/602</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JEMS/602" target="_blank" >10.4171/JEMS/602</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coherent randomness tests and computing the K-trivial sets
Popis výsledku v původním jazyce
We introduce Oberwolfach randomness, a notion within Demuth's framework of statistical tests with moving components; here the components' movement has to be coherent across levels. We show that a ML-random set computes all K-trivial sets if and only if it is not Oberwolfach random, and indeed there is a K-trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the Lebesgue density theorem and Doob's martingale convergence theorem. We also show that random sets which are not Oberwolfach random satisfy highness properties (such as LR-hardness) which mean they are close to computing the halting problem. A consequence of these results is that a ML-random set failing the effective version of Lebesgue's density theorem for closed sets must compute all K-trivial sets. Combined with a recent result by Day and Miller, this gives a positive solution to the ML-covering problem of algorithmic randomness. On the other hand these results settle stronger variants of the covering problem in the negative: no low ML-random set computes all K-trivial sets, and not every K-trivial set is computable from both halves of a random set.
Název v anglickém jazyce
Coherent randomness tests and computing the K-trivial sets
Popis výsledku anglicky
We introduce Oberwolfach randomness, a notion within Demuth's framework of statistical tests with moving components; here the components' movement has to be coherent across levels. We show that a ML-random set computes all K-trivial sets if and only if it is not Oberwolfach random, and indeed there is a K-trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the Lebesgue density theorem and Doob's martingale convergence theorem. We also show that random sets which are not Oberwolfach random satisfy highness properties (such as LR-hardness) which mean they are close to computing the halting problem. A consequence of these results is that a ML-random set failing the effective version of Lebesgue's density theorem for closed sets must compute all K-trivial sets. Combined with a recent result by Day and Miller, this gives a positive solution to the ML-covering problem of algorithmic randomness. On the other hand these results settle stronger variants of the covering problem in the negative: no low ML-random set computes all K-trivial sets, and not every K-trivial set is computable from both halves of a random set.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the European Mathematical Society
ISSN
1435-9855
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
40
Strana od-do
773-812
Kód UT WoS článku
000371990000003
EID výsledku v databázi Scopus
2-s2.0-84961839155