Classification of 4-dimensional homogeneous weakly einstein manifolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317473" target="_blank" >RIV/00216208:11320/15:10317473 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10587-015-0159-4" target="_blank" >http://dx.doi.org/10.1007/s10587-015-0159-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-015-0159-4" target="_blank" >10.1007/s10587-015-0159-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of 4-dimensional homogeneous weakly einstein manifolds
Popis výsledku v původním jazyce
Y.Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A.Gray and T. J.Willmore in the context of mean-value theorems in Riemannian geometry. The dimension 4 is the most interesting case, where each Einstein space is weakly Einstein. The original authors gave two examples of homogeneous weakly Einstein manifolds (depending on one, or two parameters, respectively) which are not Einstein. The goal of this paper is to prove that these examples are the onlyexisting examples. We use, for this purpose, the classification of 4-dimensional homogeneous Riemannian manifolds given by L.B,rard Bergery and, also, the basic method and many explicit formulas from our previous article with different t
Název v anglickém jazyce
Classification of 4-dimensional homogeneous weakly einstein manifolds
Popis výsledku anglicky
Y.Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A.Gray and T. J.Willmore in the context of mean-value theorems in Riemannian geometry. The dimension 4 is the most interesting case, where each Einstein space is weakly Einstein. The original authors gave two examples of homogeneous weakly Einstein manifolds (depending on one, or two parameters, respectively) which are not Einstein. The goal of this paper is to prove that these examples are the onlyexisting examples. We use, for this purpose, the classification of 4-dimensional homogeneous Riemannian manifolds given by L.B,rard Bergery and, also, the basic method and many explicit formulas from our previous article with different t
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannova, pseudo-Riemannova a afinní diferenciální geometrie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
39
Strana od-do
21-59
Kód UT WoS článku
000352820000002
EID výsledku v databázi Scopus
2-s2.0-84938081114