Extended formulations, nonnegative factorizations, and randomized communication protocols
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318087" target="_blank" >RIV/00216208:11320/15:10318087 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10107-014-0755-3" target="_blank" >http://dx.doi.org/10.1007/s10107-014-0755-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-014-0755-3" target="_blank" >10.1007/s10107-014-0755-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended formulations, nonnegative factorizations, and randomized communication protocols
Popis výsledku v původním jazyce
An extended formulation of a polyhedron is a linear description of a polyhedron together with a linear map such that . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis' factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441-466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of equals thenonnegative rank of its slack matrix . Moreover, Yannakakis also shows that the nonnegative rank of is at most , where is the complexity of any deterministic protocol computing . In this paper, we show that the latter result can be strengthened when weallow protocols to be randomized. In particular, we prove that the base- logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation.
Název v anglickém jazyce
Extended formulations, nonnegative factorizations, and randomized communication protocols
Popis výsledku anglicky
An extended formulation of a polyhedron is a linear description of a polyhedron together with a linear map such that . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis' factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441-466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of equals thenonnegative rank of its slack matrix . Moreover, Yannakakis also shows that the nonnegative rank of is at most , where is the complexity of any deterministic protocol computing . In this paper, we show that the latter result can be strengthened when weallow protocols to be randomized. In particular, we prove that the base- logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Programming, Series B
ISSN
0025-5610
e-ISSN
—
Svazek periodika
153
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
20
Strana od-do
75-94
Kód UT WoS článku
000361473100006
EID výsledku v databázi Scopus
2-s2.0-84941997801