Comparing Various EWMA Model Estimators: Value at Risk Perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329025" target="_blank" >RIV/00216208:11320/16:10329025 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Various EWMA Model Estimators: Value at Risk Perspective
Popis výsledku v původním jazyce
The exponentially weighted moving average (EWMA) model is a particular modelling scheme supported by RiskMetrics that is capable of predicting the current level of financial time series volatility. It is designed to track changes in conditional variance of financial returns by assigning exponentially decreasing weights to the observed past squared measurements. Recently, several on-line (i.e. recursive) estimation techniques suitable for this class of stochastic models have been introduced. These methods undoubtedly represent attractive alternatives to the common identification and calibration procedures (i.e. off-line or batch); they can estimate and control the process behaviour in real time. The aim of the paper is to examine different EWMA model estimators by using financial data. For instance, one might consider the Value at Risk (VaR) backtesting approach since Value at Risk predictions are relevant outputs of the RiskMetrics EWMA modelling framework (especially from the practical point of view). Therefore, various VaR backtests can be used to study the adequacy of different EWMA model estimators.
Název v anglickém jazyce
Comparing Various EWMA Model Estimators: Value at Risk Perspective
Popis výsledku anglicky
The exponentially weighted moving average (EWMA) model is a particular modelling scheme supported by RiskMetrics that is capable of predicting the current level of financial time series volatility. It is designed to track changes in conditional variance of financial returns by assigning exponentially decreasing weights to the observed past squared measurements. Recently, several on-line (i.e. recursive) estimation techniques suitable for this class of stochastic models have been introduced. These methods undoubtedly represent attractive alternatives to the common identification and calibration procedures (i.e. off-line or batch); they can estimate and control the process behaviour in real time. The aim of the paper is to examine different EWMA model estimators by using financial data. For instance, one might consider the Value at Risk (VaR) backtesting approach since Value at Risk predictions are relevant outputs of the RiskMetrics EWMA modelling framework (especially from the practical point of view). Therefore, various VaR backtests can be used to study the adequacy of different EWMA model estimators.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016)
ISBN
978-80-7494-296-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
265-270
Název nakladatele
TECHNICAL UNIVERSITY LIBEREC
Místo vydání
LIBEREC
Místo konání akce
Liberec
Datum konání akce
6. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000385239500046