On comparing prediction accuracy of various EWMA model estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10365151" target="_blank" >RIV/00216208:11320/17:10365151 - isvavai.cz</a>
Výsledek na webu
<a href="http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf" target="_blank" >http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On comparing prediction accuracy of various EWMA model estimators
Popis výsledku v původním jazyce
The exponentially weighted moving average (EWMA) model is a particular modelling scheme advocated by RiskMetrics that is capable of predicting the current level of financial time series volatility. It is designed to track changes in conditional variance of financial returns by assigning exponentially decreasing weights to the observed past squared measurements. Recently, a recursive estimation technique suitable for this class of stochastic processes has been introduced and discussed. It represents a computationally attractive alternative to the already established non-recursive estimation strategies since it is effective in terms of memory storage, computational complexity and its ability to estimate and control the EWMA modelling scheme in real time. The aim of the paper is to investigate prediction accuracy of different EWMA model estimators. By analysing a set of eighteen very diverse world stock indices, this study has shown that the recursive estimation scheme can be recommended due to its advantageous properties if predicting the volatility; it is competitive to other approaches commonly used in financial practice.
Název v anglickém jazyce
On comparing prediction accuracy of various EWMA model estimators
Popis výsledku anglicky
The exponentially weighted moving average (EWMA) model is a particular modelling scheme advocated by RiskMetrics that is capable of predicting the current level of financial time series volatility. It is designed to track changes in conditional variance of financial returns by assigning exponentially decreasing weights to the observed past squared measurements. Recently, a recursive estimation technique suitable for this class of stochastic processes has been introduced and discussed. It represents a computationally attractive alternative to the already established non-recursive estimation strategies since it is effective in terms of memory storage, computational complexity and its ability to estimate and control the EWMA modelling scheme in real time. The aim of the paper is to investigate prediction accuracy of different EWMA model estimators. By analysing a set of eighteen very diverse world stock indices, this study has shown that the recursive estimation scheme can be recommended due to its advantageous properties if predicting the volatility; it is competitive to other approaches commonly used in financial practice.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00676S" target="_blank" >GA17-00676S: Dynamické modely rizika ve financích a pojišťovnictví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 35th International Conference on Mathematical Methods in Economics
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
219-224
Název nakladatele
University of Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové (CZ)
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000427151400038