Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recursive estimation of EWMA model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400157" target="_blank" >RIV/00216208:11320/19:10400157 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p8bDYiFZ15" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p8bDYiFZ15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21314/JOR.2019.413" target="_blank" >10.21314/JOR.2019.413</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recursive estimation of EWMA model

  • Popis výsledku v původním jazyce

    The exponentially weighted moving average (EWMA) model is a particular modeling scheme, supported by RiskMetrics, that is capable of forecasting the current level of volatility of financial time series. It is designed to track changes in the conditional variance of financial returns by assigning exponentially decreasing weights to observed past squared measurements. The aim of this paper is twofold. First, it introduces two recursive estimation algorithms that are appropriate for the EWMA model. Both are derived by employing the general recursive prediction error scheme. Moreover, they represent a computationally effective alternative to already established nonrecursive estimation strategies since they are effective in terms of memory storage, computational complexity and detecting structural changes. Second, this paper investigates the prediction ability of the proposed recursive estimation schemes when compared with other common (nonrecursive) estimation methods. The priorities of the suggested recursive estimators are demonstrated by means of a simulation study and an extensive empirical case study of eighteen key world stock indexes. Combinations of recursive predictions are also studied. Such a strategy can be recommended due to its advantageous properties when predicting volatility.

  • Název v anglickém jazyce

    Recursive estimation of EWMA model

  • Popis výsledku anglicky

    The exponentially weighted moving average (EWMA) model is a particular modeling scheme, supported by RiskMetrics, that is capable of forecasting the current level of volatility of financial time series. It is designed to track changes in the conditional variance of financial returns by assigning exponentially decreasing weights to observed past squared measurements. The aim of this paper is twofold. First, it introduces two recursive estimation algorithms that are appropriate for the EWMA model. Both are derived by employing the general recursive prediction error scheme. Moreover, they represent a computationally effective alternative to already established nonrecursive estimation strategies since they are effective in terms of memory storage, computational complexity and detecting structural changes. Second, this paper investigates the prediction ability of the proposed recursive estimation schemes when compared with other common (nonrecursive) estimation methods. The priorities of the suggested recursive estimators are demonstrated by means of a simulation study and an extensive empirical case study of eighteen key world stock indexes. Combinations of recursive predictions are also studied. Such a strategy can be recommended due to its advantageous properties when predicting volatility.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-00676S" target="_blank" >GA17-00676S: Dynamické modely rizika ve financích a pojišťovnictví</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal Of Risk

  • ISSN

    1465-1211

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    25

  • Strana od-do

    43-67

  • Kód UT WoS článku

    000481987900003

  • EID výsledku v databázi Scopus

    2-s2.0-85072680194