Averaged extreme regression quantile
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329104" target="_blank" >RIV/00216208:11320/16:10329104 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Averaged extreme regression quantile
Popis výsledku v původním jazyce
Various events in the nature, economics and in other areas force us to combine the study of extremes with regression and other methods. A useful tool for reducing the role of nuisance regression, while we are interested in the shape or tails of the basic distribution, is provided by the averaged regression quantile and namely by the average extreme regression quantile. Both are weighted means of regression quantile components, with weights depending on the regressors. Our primary interest is the averaged extreme regression quantile (AERQ), its structure, qualities and its applications, e.g. in investigation of a conditional loss given a value exogenous economic and market variables. AERQ has several interesting equivalent forms: While it is originally defined as an optimal solution of a specific linear programming problem, hence is a weighted mean of responses corresponding to the optimal base of the pertaining linear program, we give another equivalent form as a maximum residual of responses from a specific R-estimator of the slope components of regression parameter.The latter form shows that while AERQ equals to the maximum of some residuals of the responses, it has minimal possible perturbation by the regressors. Notice that these finite-sample results are true even for non-identically distributed model errors, e.g. under heteroscedasticity. Moreover, the representations are formally true even when the errors are dependent - this all provokes a question of the right interpretation and of other possible applications.
Název v anglickém jazyce
Averaged extreme regression quantile
Popis výsledku anglicky
Various events in the nature, economics and in other areas force us to combine the study of extremes with regression and other methods. A useful tool for reducing the role of nuisance regression, while we are interested in the shape or tails of the basic distribution, is provided by the averaged regression quantile and namely by the average extreme regression quantile. Both are weighted means of regression quantile components, with weights depending on the regressors. Our primary interest is the averaged extreme regression quantile (AERQ), its structure, qualities and its applications, e.g. in investigation of a conditional loss given a value exogenous economic and market variables. AERQ has several interesting equivalent forms: While it is originally defined as an optimal solution of a specific linear programming problem, hence is a weighted mean of responses corresponding to the optimal base of the pertaining linear program, we give another equivalent form as a maximum residual of responses from a specific R-estimator of the slope components of regression parameter.The latter form shows that while AERQ equals to the maximum of some residuals of the responses, it has minimal possible perturbation by the regressors. Notice that these finite-sample results are true even for non-identically distributed model errors, e.g. under heteroscedasticity. Moreover, the representations are formally true even when the errors are dependent - this all provokes a question of the right interpretation and of other possible applications.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-00243S" target="_blank" >GA15-00243S: Robustní inference na náhodných procesech a funkcionálních datech s aplikacemi především v ekonometrii a financích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Extremes
ISSN
1386-1999
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
41-49
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84956649747