Refining subgames in large imperfect information games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329244" target="_blank" >RIV/00216208:11320/16:10329244 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12102/11636" target="_blank" >http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12102/11636</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Refining subgames in large imperfect information games
Popis výsledku v původním jazyce
The leading approach to solving large imperfect information games is to pre-calculate an approximate solution using a simplified abstraction of the full game; that solution is then used to play the original, full-scale game. The abstraction step is necessitated by the size of the game tree. However, as the original game progresses, the remaining portion of the tree (the subgame) becomes smaller. An appealing idea is to use the simplified abstraction to play the early parts of the game and then, once the subgame becomes tractable, to calculate a solution using a finer-grained abstraction in real time, creating a combined final strategy. While this approach is straightforward for perfect information games, it is a much more complex problem for imperfect information games. If the subgame is solved locally, the opponent can alter his play in prior to this subgame to exploit our combined strategy. To prevent this, we introduce the notion of subgame margin, a simple value with appealing properties. If any best response reaches the subgame, the improvement of exploitability of the combined strategy is (at least) proportional to the subgame margin. This motivates subgame refinements resulting in large positive margins. Unfortunately, current techniques either neglect subgame margin (potentially leading to a large negative subgame margin and drastically more exploitable strategies), or guarantee only non-negative subgame margin (possibly producing the original, unrefined strategy, even if much stronger strategies are possible). Our technique remedies this problem by maximizing the subgame margin and is guaranteed to find the optimal solution. We evaluate our technique using one of the top participants of the AAAI-14 Computer Poker Competition, the leading playground for agents in imperfect information settings.
Název v anglickém jazyce
Refining subgames in large imperfect information games
Popis výsledku anglicky
The leading approach to solving large imperfect information games is to pre-calculate an approximate solution using a simplified abstraction of the full game; that solution is then used to play the original, full-scale game. The abstraction step is necessitated by the size of the game tree. However, as the original game progresses, the remaining portion of the tree (the subgame) becomes smaller. An appealing idea is to use the simplified abstraction to play the early parts of the game and then, once the subgame becomes tractable, to calculate a solution using a finer-grained abstraction in real time, creating a combined final strategy. While this approach is straightforward for perfect information games, it is a much more complex problem for imperfect information games. If the subgame is solved locally, the opponent can alter his play in prior to this subgame to exploit our combined strategy. To prevent this, we introduce the notion of subgame margin, a simple value with appealing properties. If any best response reaches the subgame, the improvement of exploitability of the combined strategy is (at least) proportional to the subgame margin. This motivates subgame refinements resulting in large positive margins. Unfortunately, current techniques either neglect subgame margin (potentially leading to a large negative subgame margin and drastically more exploitable strategies), or guarantee only non-negative subgame margin (possibly producing the original, unrefined strategy, even if much stronger strategies are possible). Our technique remedies this problem by maximizing the subgame margin and is guaranteed to find the optimal solution. We evaluate our technique using one of the top participants of the AAAI-14 Computer Poker Competition, the leading playground for agents in imperfect information settings.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-10660S" target="_blank" >GA13-10660S: Intervalové metody pro optimalizační úlohy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-661-5
ISSN
2159-5399
e-ISSN
—
Počet stran výsledku
7
Strana od-do
572-578
Název nakladatele
AAAI Press
Místo vydání
Palo Alto, California
Místo konání akce
Hyatt Regency Phoenix
Datum konání akce
12. 2. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—