An Algorithm for Constructing and Solving Imperfect Recall Abstractions of Large Extensive-Form Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315393" target="_blank" >RIV/68407700:21230/17:00315393 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ijcai.org/proceedings/2017/130" target="_blank" >https://www.ijcai.org/proceedings/2017/130</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2017/130" target="_blank" >10.24963/ijcai.2017/130</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Algorithm for Constructing and Solving Imperfect Recall Abstractions of Large Extensive-Form Games
Popis výsledku v původním jazyce
We solve large two-player zero-sum extensive-form games with perfect recall. We propose a new algorithm based on fictitious play that significantly reduces memory requirements for storing average strategies. The key feature is exploiting imperfect recall abstractions while preserving the convergence rate and guarantees of fictitious play applied directly to the perfect recall game. The algorithm creates a coarse imperfect recall abstraction of the perfect recall game and automatically refines its information set structure only where the imperfect recall might cause problems. Experimental evaluation shows that our novel algorithm is able to solve a simplified poker game with 7.10^5 information sets using an abstracted game with only 1.8% of information sets of the original game. Additional experiments on poker and randomly generated games suggest that the relative size of the abstraction decreases as the size of the solved games increases.
Název v anglickém jazyce
An Algorithm for Constructing and Solving Imperfect Recall Abstractions of Large Extensive-Form Games
Popis výsledku anglicky
We solve large two-player zero-sum extensive-form games with perfect recall. We propose a new algorithm based on fictitious play that significantly reduces memory requirements for storing average strategies. The key feature is exploiting imperfect recall abstractions while preserving the convergence rate and guarantees of fictitious play applied directly to the perfect recall game. The algorithm creates a coarse imperfect recall abstraction of the perfect recall game and automatically refines its information set structure only where the imperfect recall might cause problems. Experimental evaluation shows that our novel algorithm is able to solve a simplified poker game with 7.10^5 information sets using an abstracted game with only 1.8% of information sets of the original game. Additional experiments on poker and randomly generated games suggest that the relative size of the abstraction decreases as the size of the solved games increases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23235S" target="_blank" >GA15-23235S: Abstrakce a extenzivní hry s nedokonalou pamětí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-0-3
ISSN
—
e-ISSN
1045-0823
Počet stran výsledku
7
Strana od-do
936-942
Název nakladatele
Association for the Advancement of Artificial Intelligence (AAAI)
Místo vydání
Palo Alto, California
Místo konání akce
Melbourne
Datum konání akce
19. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—