To Plan or to Simply React? An Experimental Study of Action Planning in a Game Environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329725" target="_blank" >RIV/00216208:11320/16:10329725 - isvavai.cz</a>
Výsledek na webu
<a href="http://popelka.ms.mff.cuni.cz/~cerny/papers/cerny_planning_CoIn_final.pdf" target="_blank" >http://popelka.ms.mff.cuni.cz/~cerny/papers/cerny_planning_CoIn_final.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/coin.12079" target="_blank" >10.1111/coin.12079</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
To Plan or to Simply React? An Experimental Study of Action Planning in a Game Environment
Popis výsledku v původním jazyce
Many contemporary computer games, notably action and role-playing games, represent an interesting class of navigation-intensive dynamic real-time simulations inhabited by autonomous intelligent virtual agents (IVAs). Although higher level reasoning of IVAs in these domains seems suited for action planning, planning is not widely adopted in existing games and similar applications. Moreover, statistically rigorous study measuring performance of planners in decision making in a game-like domain is missing. Here, five classical planners were connected to the virtual environment of Unreal Development Kit along with a planner for delete-free domains (only positive preconditions and positive effects). Performance of IVAs employing those planners and IVAs with reactive architecture was measured on a class of game-inspired test environments of various sizes and under different levels of external interference. The analysis has shown that planning agents outperform reactive agents if (i) the size of the problem is small or if (b) the environment changes are either hostile to the agent or infrequent. In delete-free domains, specialized approaches are inferior to classical planners because the lower expressivity of delete-free domains results in lower plan quality. These results can help to determine when planning is advantageous in games and for IVAs control in other dynamic real-time environments.
Název v anglickém jazyce
To Plan or to Simply React? An Experimental Study of Action Planning in a Game Environment
Popis výsledku anglicky
Many contemporary computer games, notably action and role-playing games, represent an interesting class of navigation-intensive dynamic real-time simulations inhabited by autonomous intelligent virtual agents (IVAs). Although higher level reasoning of IVAs in these domains seems suited for action planning, planning is not widely adopted in existing games and similar applications. Moreover, statistically rigorous study measuring performance of planners in decision making in a game-like domain is missing. Here, five classical planners were connected to the virtual environment of Unreal Development Kit along with a planner for delete-free domains (only positive preconditions and positive effects). Performance of IVAs employing those planners and IVAs with reactive architecture was measured on a class of game-inspired test environments of various sizes and under different levels of external interference. The analysis has shown that planning agents outperform reactive agents if (i) the size of the problem is small or if (b) the environment changes are either hostile to the agent or infrequent. In delete-free domains, specialized approaches are inferior to classical planners because the lower expressivity of delete-free domains results in lower plan quality. These results can help to determine when planning is advantageous in games and for IVAs control in other dynamic real-time environments.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F10%2F1287" target="_blank" >GAP103/10/1287: PlanEx: Propojení plánování a provádění plánů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Intelligence
ISSN
0824-7935
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
43
Strana od-do
668-710
Kód UT WoS článku
000387354900007
EID výsledku v databázi Scopus
2-s2.0-84952684817