Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximate Transition Density Estimation of the Stochastic Cusp Model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329834" target="_blank" >RIV/00216208:11320/16:10329834 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/16:00507383

  • Výsledek na webu

    <a href="http://mme2016.tul.cz/conferenceproceedings/mme2016_conference_proceedings.pdf" target="_blank" >http://mme2016.tul.cz/conferenceproceedings/mme2016_conference_proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximate Transition Density Estimation of the Stochastic Cusp Model

  • Popis výsledku v původním jazyce

    Stochastic cusp model is defined by stochastic differential equation with cubic drift. Its stationary density allows for skewness, different tail shapes and bimodality. There are two stable equilibria in bimodality case and movement from one equilibrium to another is interpreted as a crash. Qualitative properties of the cusp model were employed to model crashes on financial markets, however, practical applications of the model employed the stationary distribution, which does not take into account the serial dependence between observations. Because closed-form solution of the transition density is not known, one has to use approximate technique to estimate transition density. This paper extends approximate maximum likelihood method, which relies on the closed-form expansion of the transition density, to incorporate time-varying parameters of the drift function to be driven by market fundamentals. A measure to predict endogenous crashes of the model is proposed using transition density estimates. Empirical example estimates Iceland Krona depreciation with respect to the British Pound in the year 2001 using differential of interbank interest rates as a market fundamental.

  • Název v anglickém jazyce

    Approximate Transition Density Estimation of the Stochastic Cusp Model

  • Popis výsledku anglicky

    Stochastic cusp model is defined by stochastic differential equation with cubic drift. Its stationary density allows for skewness, different tail shapes and bimodality. There are two stable equilibria in bimodality case and movement from one equilibrium to another is interpreted as a crash. Qualitative properties of the cusp model were employed to model crashes on financial markets, however, practical applications of the model employed the stationary distribution, which does not take into account the serial dependence between observations. Because closed-form solution of the transition density is not known, one has to use approximate technique to estimate transition density. This paper extends approximate maximum likelihood method, which relies on the closed-form expansion of the transition density, to incorporate time-varying parameters of the drift function to be driven by market fundamentals. A measure to predict endogenous crashes of the model is proposed using transition density estimates. Empirical example estimates Iceland Krona depreciation with respect to the British Pound in the year 2001 using differential of interbank interest rates as a market fundamental.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016)

  • ISBN

    978-80-7494-296-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    892-897

  • Název nakladatele

    TECHNICAL UNIVERSITY LIBEREC

  • Místo vydání

    LIBEREC

  • Místo konání akce

    Liberec

  • Datum konání akce

    6. 9. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000385239500153