Curves in Rd intersecting every hyperplane at most d 1 times
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332297" target="_blank" >RIV/00216208:11320/16:10332297 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4171/JEMS/645" target="_blank" >http://dx.doi.org/10.4171/JEMS/645</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JEMS/645" target="_blank" >10.4171/JEMS/645</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Curves in Rd intersecting every hyperplane at most d 1 times
Popis výsledku v původním jazyce
By a curve in Rd we mean a continuous map γ: I -> Rd, where I is a subset of R is a closed interval. We call a curve γ in Rd (< k+1)-crossing if it intersects every hyperplane at most k times (counted with multiplicity). The (< d+1)-crossing curves in Rd are often called convex curves and they form an important class; a primary example is the moment curve {(t, t2, ..., td): t in [0, 1]}. They are also closely related to Chebyshev systems, which is a notion of considerable importance, e.g., in approximation theory. Our main result is that for every d there is M = M(d) such that every (< d + 2)-crossing curve in Rd can be subdivided into at most M(< d+1)-crossing curve segments. As a consequence, based on the work of Eliáš, Roldán, Safernová, and the second author, we obtain an essentially tight lower bound for a geometric Ramsey-type problem in Rd concerning order-type homogeneous sequences of points, investigated in several previous papers.
Název v anglickém jazyce
Curves in Rd intersecting every hyperplane at most d 1 times
Popis výsledku anglicky
By a curve in Rd we mean a continuous map γ: I -> Rd, where I is a subset of R is a closed interval. We call a curve γ in Rd (< k+1)-crossing if it intersects every hyperplane at most k times (counted with multiplicity). The (< d+1)-crossing curves in Rd are often called convex curves and they form an important class; a primary example is the moment curve {(t, t2, ..., td): t in [0, 1]}. They are also closely related to Chebyshev systems, which is a notion of considerable importance, e.g., in approximation theory. Our main result is that for every d there is M = M(d) such that every (< d + 2)-crossing curve in Rd can be subdivided into at most M(< d+1)-crossing curve segments. As a consequence, based on the work of Eliáš, Roldán, Safernová, and the second author, we obtain an essentially tight lower bound for a geometric Ramsey-type problem in Rd concerning order-type homogeneous sequences of points, investigated in several previous papers.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the European Mathematical Society
ISSN
1435-9855
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
2469-2482
Kód UT WoS článku
000386876900002
EID výsledku v databázi Scopus
2-s2.0-84991687119