On digraphs of excess one
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43955271" target="_blank" >RIV/49777513:23520/18:43955271 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0166218X17303025" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166218X17303025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2017.06.016" target="_blank" >10.1016/j.dam.2017.06.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On digraphs of excess one
Popis výsledku v původním jazyce
A digraph in which, for every pair of vertices u and v (not necessarily distinct), there is at most one walk of length at most k from u to v is called a k-geodetic digraph. The order N(d,k) of a k-geodetic digraph of minimum out-degree d is at least the Moore bound M(d,k), which is attained if and only if the digraph is strongly geodetic, that is, if its diameter is k. Thus, strongly geodetic digraphs only exist for d=1 or k=1. Hence, for d, k greater than 1 we wish to determine if there exist k-geodetic digraphs with minimum out-degree d and order N(d,k)=M(d,k)+1. Such a digraph is denoted as a (d,k,1)-digraph or said to have excess 1. In this paper, we prove that (d,k,1)-digraphs are always diregular and thus that no (2,k,1)-digraphs exist. Furthermore, we study the factorization in Q[x] of the characteristic polynomial of a (d,k,1)-digraph, from which we show the non-existence of such digraphs for k=2 when d is greater than 7 and for k=3,4 when d is greater than 1.
Název v anglickém jazyce
On digraphs of excess one
Popis výsledku anglicky
A digraph in which, for every pair of vertices u and v (not necessarily distinct), there is at most one walk of length at most k from u to v is called a k-geodetic digraph. The order N(d,k) of a k-geodetic digraph of minimum out-degree d is at least the Moore bound M(d,k), which is attained if and only if the digraph is strongly geodetic, that is, if its diameter is k. Thus, strongly geodetic digraphs only exist for d=1 or k=1. Hence, for d, k greater than 1 we wish to determine if there exist k-geodetic digraphs with minimum out-degree d and order N(d,k)=M(d,k)+1. Such a digraph is denoted as a (d,k,1)-digraph or said to have excess 1. In this paper, we prove that (d,k,1)-digraphs are always diregular and thus that no (2,k,1)-digraphs exist. Furthermore, we study the factorization in Q[x] of the characteristic polynomial of a (d,k,1)-digraph, from which we show the non-existence of such digraphs for k=2 when d is greater than 7 and for k=3,4 when d is greater than 1.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
DISCRETE APPLIED MATHEMATICS
ISSN
0166-218X
e-ISSN
—
Svazek periodika
238
Číslo periodika v rámci svazku
MAR 31 2018
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
161-166
Kód UT WoS článku
000427218900017
EID výsledku v databázi Scopus
2-s2.0-85026783991