Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403067" target="_blank" >RIV/00216208:11320/19:10403067 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MOUjoxqJui" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MOUjoxqJui</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-018-9970-7" target="_blank" >10.1007/s00454-018-9970-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
Popis výsledku v původním jazyce
Let d and k be integers with 1kd-1. Let be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional nxxn grid is at least (nd(d-k)/(d-1)-epsilon) and at most O(nd(d-k)/(d-1)), where epsilon>0 is an arbitrarily small constant. This nearly settles a problem mentioned in the book by Brass et al. (Research problems in discrete geometry, Springer, New York, 2005). We also find tight bounds for the minimum number of k-dimensional affine subspaces needed to cover K. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer (Comput Geom 25(1-2):13-20, 2003). For d3 and epsilon(0,1), we show that there is an integer r=r(d,epsilon) such that for all positive integers n,m the following statement is true. There is a set of n points in Rd and an arrangement of m hyperplanes in Rd with no Kr,r in their incidence graph and with at least ((mn)1-(2d+3)/((d+2)(d+3))-epsilon) incidences if d is odd and ((mn)1-(2d2+d-2)/((d+2)(d2+2d-2))-epsilon) incidences if d is even.
Název v anglickém jazyce
Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
Popis výsledku anglicky
Let d and k be integers with 1kd-1. Let be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional nxxn grid is at least (nd(d-k)/(d-1)-epsilon) and at most O(nd(d-k)/(d-1)), where epsilon>0 is an arbitrarily small constant. This nearly settles a problem mentioned in the book by Brass et al. (Research problems in discrete geometry, Springer, New York, 2005). We also find tight bounds for the minimum number of k-dimensional affine subspaces needed to cover K. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer (Comput Geom 25(1-2):13-20, 2003). For d3 and epsilon(0,1), we show that there is an integer r=r(d,epsilon) such that for all positive integers n,m the following statement is true. There is a set of n points in Rd and an arrangement of m hyperplanes in Rd with no Kr,r in their incidence graph and with at least ((mn)1-(2d+3)/((d+2)(d+3))-epsilon) incidences if d is odd and ((mn)1-(2d2+d-2)/((d+2)(d2+2d-2))-epsilon) incidences if d is even.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-14179S" target="_blank" >GA14-14179S: Algoritmické, strukturální a složitostní aspekty konfigurací v rovině</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
325-354
Kód UT WoS článku
000456720300006
EID výsledku v databázi Scopus
2-s2.0-85041829923