k-Dirac operator and the Cartan-Kähler theorem for weighted differential operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333480" target="_blank" >RIV/00216208:11320/16:10333480 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.difgeo.2016.09.004" target="_blank" >http://dx.doi.org/10.1016/j.difgeo.2016.09.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2016.09.004" target="_blank" >10.1016/j.difgeo.2016.09.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
k-Dirac operator and the Cartan-Kähler theorem for weighted differential operators
Popis výsledku v původním jazyce
The k-Dirac operator is a first order differential operator which is natural to a particular class of parabolic geometries which include the Lie contact structures. A natural task is to understand the set of local null solutions of the operator at a given point. We will show that this set has a very nice and simple structure, namely we will show that there is a submanifold passing through the point such that any section defined on the submanifold extends locally to a unique null solution of the operator. This result also indicates that these parabolic geometries are naturally associated to a certain constant coefficient operator which has been studied in Clifford analysis and this is the original motivation for this paper. In order to prove the claim about the set of initial conditions for the k-Dirac operator we will adapt some parts of the theory of exterior differential systems and the Cartan-Kähler theorem to the setting of differential operators which are natural to geometric structures that are equipped with a filtration of the tangent bundle.
Název v anglickém jazyce
k-Dirac operator and the Cartan-Kähler theorem for weighted differential operators
Popis výsledku anglicky
The k-Dirac operator is a first order differential operator which is natural to a particular class of parabolic geometries which include the Lie contact structures. A natural task is to understand the set of local null solutions of the operator at a given point. We will show that this set has a very nice and simple structure, namely we will show that there is a submanifold passing through the point such that any section defined on the submanifold extends locally to a unique null solution of the operator. This result also indicates that these parabolic geometries are naturally associated to a certain constant coefficient operator which has been studied in Clifford analysis and this is the original motivation for this paper. In order to prove the claim about the set of initial conditions for the k-Dirac operator we will adapt some parts of the theory of exterior differential systems and the Cartan-Kähler theorem to the setting of differential operators which are natural to geometric structures that are equipped with a filtration of the tangent bundle.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Differential Geometry and its Application
ISSN
0926-2245
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
49
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
351-371
Kód UT WoS článku
000389092700019
EID výsledku v databázi Scopus
2-s2.0-84992110685