Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Resolution of the k-Dirac operator

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386086" target="_blank" >RIV/00216208:11320/18:10386086 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/pdf/1705.10168.pdf" target="_blank" >https://arxiv.org/pdf/1705.10168.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00006-018-0830-6" target="_blank" >10.1007/s00006-018-0830-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Resolution of the k-Dirac operator

  • Popis výsledku v původním jazyce

    This is the second part in a series of two papers. The k-Dirac complex is a complex of differential operators which are naturally associated to a particular |2|-graded parabolic geometry. In this paper we will consider the k-Dirac complex over the homogeneous space of the parabolic geometry and as a first result, we will prove that the k-Dirac complex is formally exact (in the sense of formal power series). Then we will show that the k-Dirac complex descends from an affine subset of the homogeneous space to a complex of linear and constant coefficient differential operators and that the first operator in the descended complex is the k-Dirac operator studied in Clifford analysis. The main result of this paper is that the descended complex is locally exact and thus it forms a resolution of the k-Dirac operator.

  • Název v anglickém jazyce

    Resolution of the k-Dirac operator

  • Popis výsledku anglicky

    This is the second part in a series of two papers. The k-Dirac complex is a complex of differential operators which are naturally associated to a particular |2|-graded parabolic geometry. In this paper we will consider the k-Dirac complex over the homogeneous space of the parabolic geometry and as a first result, we will prove that the k-Dirac complex is formally exact (in the sense of formal power series). Then we will show that the k-Dirac complex descends from an affine subset of the homogeneous space to a complex of linear and constant coefficient differential operators and that the first operator in the descended complex is the k-Dirac operator studied in Clifford analysis. The main result of this paper is that the descended complex is locally exact and thus it forms a resolution of the k-Dirac operator.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01171S" target="_blank" >GA17-01171S: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Applied Clifford Algebras

  • ISSN

    0188-7009

  • e-ISSN

  • Svazek periodika

    2018[28]

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

    000427260400014

  • EID výsledku v databázi Scopus

    2-s2.0-85041589388