Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convergence theory of exact interpolation scheme for computing several eigenvectors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334581" target="_blank" >RIV/00216208:11320/16:10334581 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21110/16:00235071

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/nla.2029" target="_blank" >http://dx.doi.org/10.1002/nla.2029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nla.2029" target="_blank" >10.1002/nla.2029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convergence theory of exact interpolation scheme for computing several eigenvectors

  • Popis výsledku v původním jazyce

    An asymptotic convergence analysis of a new multilevel method for numerical solution of eigenvalues and eigenvectors of symmetric and positive definite matrices is performed. The analyzed method is a generalization of the original method that has recently been proposed by R. Kuel and P. Vanek (DOI: 10.1002/nla.1975) and uses a standard multigrid prolongator matrix enriched by one full column vector, which approximates the first eigenvector. The new generalized eigensolver is designed to compute eigenvectors. Their asymptotic convergence in terms of the generalized residuals is proved, and its convergence factor is estimated. The theoretical analysis is illustrated by numerical examples.

  • Název v anglickém jazyce

    Convergence theory of exact interpolation scheme for computing several eigenvectors

  • Popis výsledku anglicky

    An asymptotic convergence analysis of a new multilevel method for numerical solution of eigenvalues and eigenvectors of symmetric and positive definite matrices is performed. The analyzed method is a generalization of the original method that has recently been proposed by R. Kuel and P. Vanek (DOI: 10.1002/nla.1975) and uses a standard multigrid prolongator matrix enriched by one full column vector, which approximates the first eigenvector. The new generalized eigensolver is designed to compute eigenvectors. Their asymptotic convergence in terms of the generalized residuals is proved, and its convergence factor is estimated. The theoretical analysis is illustrated by numerical examples.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Linear Algebra with Applications

  • ISSN

    1070-5325

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    373-390

  • Kód UT WoS článku

    000369856400009

  • EID výsledku v databázi Scopus

    2-s2.0-84956796209