Steepest Descent Method with Random Step Lengths
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F17%3A00006440" target="_blank" >RIV/46747885:24510/17:00006440 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10208-015-9290-8" target="_blank" >https://link.springer.com/article/10.1007/s10208-015-9290-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10208-015-9290-8" target="_blank" >10.1007/s10208-015-9290-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Steepest Descent Method with Random Step Lengths
Popis výsledku v původním jazyce
The paper studies the steepest descent method applied to the minimization of a twice continuously differentiable function. Under certain conditions, the random choice of the step length parameter, independent of the actual iteration, generates a process that is almost surely R-convergent for quadratic functions. The convergence properties of this random procedure are characterized based on the mean value function related to the distribution of the step length parameter. The distribution of the random step length, which guarantees the maximum asymptotic convergence rate independent of the detailed properties of the Hessian matrix of the minimized function, is found, and its uniqueness is proved. The asymptotic convergence rate of this optimally created random procedure is equal to the convergence rate of the Chebyshev polynomials method. Under practical conditions, the efficiency of the suggested random steepest descent method is degraded by numeric noise, particularly for ill-conditioned problems; furthermore, the asymptotic convergence rate is not achieved due to the finiteness of the realized calculations. The suggested random procedure is also applied to the minimization of a general non-quadratic function. An algorithm needed to estimate relevant bounds for the Hessian matrix spectrum is created. In certain cases, the random procedure may surpass the conjugate gradient method. Interesting results are achieved when minimizing functions having a large number of local minima. Preliminary results of numerical experiments show that some modifications of the presented basic method may significantly improve its properties.
Název v anglickém jazyce
Steepest Descent Method with Random Step Lengths
Popis výsledku anglicky
The paper studies the steepest descent method applied to the minimization of a twice continuously differentiable function. Under certain conditions, the random choice of the step length parameter, independent of the actual iteration, generates a process that is almost surely R-convergent for quadratic functions. The convergence properties of this random procedure are characterized based on the mean value function related to the distribution of the step length parameter. The distribution of the random step length, which guarantees the maximum asymptotic convergence rate independent of the detailed properties of the Hessian matrix of the minimized function, is found, and its uniqueness is proved. The asymptotic convergence rate of this optimally created random procedure is equal to the convergence rate of the Chebyshev polynomials method. Under practical conditions, the efficiency of the suggested random steepest descent method is degraded by numeric noise, particularly for ill-conditioned problems; furthermore, the asymptotic convergence rate is not achieved due to the finiteness of the realized calculations. The suggested random procedure is also applied to the minimization of a general non-quadratic function. An algorithm needed to estimate relevant bounds for the Hessian matrix spectrum is created. In certain cases, the random procedure may surpass the conjugate gradient method. Interesting results are achieved when minimizing functions having a large number of local minima. Preliminary results of numerical experiments show that some modifications of the presented basic method may significantly improve its properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foundations of Computational Mathematics
ISSN
1615-3375
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
64
Strana od-do
359-422
Kód UT WoS článku
000398888500002
EID výsledku v databázi Scopus
2-s2.0-84947932086