Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Metody vnitřních bodů pro zobecněnou minimaxovou optimalizaci

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00317006" target="_blank" >RIV/67985807:_____/08:00317006 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Primal Interior Point Method for Generalized Minimax Functions

  • Popis výsledku v původním jazyce

    A new class of primal interior point methods for generalized minimax optimization is described. These methods use besides a standard logarithmic barrier function also barrier functions bounded from below which have more favourable properties for investigation of global convergence. It deals with descent direction methods, where an approxmation of the Hessian matrix is computed by gradient differences or quasi-Newton updates. Two-level optimization is used. A direction vector is computed by a Choleski decompostition of a sparse matrix. Numerical experiments concerning two basic applications, minimization of a point maximum and a sum of absolute values of smooth functions, are presented.

  • Název v anglickém jazyce

    Primal Interior Point Method for Generalized Minimax Functions

  • Popis výsledku anglicky

    A new class of primal interior point methods for generalized minimax optimization is described. These methods use besides a standard logarithmic barrier function also barrier functions bounded from below which have more favourable properties for investigation of global convergence. It deals with descent direction methods, where an approxmation of the Hessian matrix is computed by gradient differences or quasi-Newton updates. Two-level optimization is used. A direction vector is computed by a Choleski decompostition of a sparse matrix. Numerical experiments concerning two basic applications, minimization of a point maximum and a sum of absolute values of smooth functions, are presented.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Programs and Algorithms of Numerical Mathematics

  • ISBN

    978-80-85823-55-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

  • Název nakladatele

    MÚ AV ČR, v.v.i

  • Místo vydání

    Praha

  • Místo konání akce

    Dolní Maxov

  • Datum konání akce

    1. 6. 2008

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku