Primal Interior-Point Method for Minimization of Generalized Minimax Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00347293" target="_blank" >RIV/67985807:_____/10:00347293 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Primal Interior-Point Method for Minimization of Generalized Minimax Functions
Popis výsledku v původním jazyce
In this paper, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning its implementation covering numerical differentiation, variable metric updates, and a barrier parameter decrease. Using standard weak assumptions, we prove that this algorithm is globally convergent if a bounded barrier is used. Then, using stronger assumptions, we prove that it is globally convergent also for the logarithmic barrier. Finally, we present results of computational experiments confirming the efficiency of the primal interior point method for special cases of generalized minimax problems.
Název v anglickém jazyce
Primal Interior-Point Method for Minimization of Generalized Minimax Functions
Popis výsledku anglicky
In this paper, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning its implementation covering numerical differentiation, variable metric updates, and a barrier parameter decrease. Using standard weak assumptions, we prove that this algorithm is globally convergent if a bounded barrier is used. Then, using stronger assumptions, we prove that it is globally convergent also for the logarithmic barrier. Finally, we present results of computational experiments confirming the efficiency of the primal interior point method for special cases of generalized minimax problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F1957" target="_blank" >GA201/09/1957: Vývoj metod pro řešení rozsáhlých úloh nelineárního programování a nehladké optimalizace</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
46
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000284562000008
EID výsledku v databázi Scopus
—