Product Importance Sampling for Light Transport Path Guiding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10336431" target="_blank" >RIV/00216208:11320/16:10336431 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/cgf.12950" target="_blank" >http://dx.doi.org/10.1111/cgf.12950</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/cgf.12950" target="_blank" >10.1111/cgf.12950</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Product Importance Sampling for Light Transport Path Guiding
Popis výsledku v původním jazyce
The efficiency of Monte Carlo algorithms for light transport simulation is directly related to their ability to importance-sample the product of the illumination and reflectance in the rendering equation. Since the optimal sampling strategy would require knowledge about the transport solution itself, importance sampling most often follows only one of the known factors - BRDF or an approximation of the incident illumination. To address this issue, we propose to represent the illumination and the reflectance factors by the Gaussian mixture model (GMM), which we fit by using a combination of weighted expectation maximization and non-linear optimization methods. The GMM representation then allows us to obtain the resulting product distribution for importance sampling on-the-fly at each scene point. For its efficient evaluation and sampling we preform an up-front adaptive decimation of both factor mixtures. In comparison to state-of-the-art sampling methods, we show that our product importance sampling can lead to significantly better convergence in scenes with complex illumination and reflectance.
Název v anglickém jazyce
Product Importance Sampling for Light Transport Path Guiding
Popis výsledku anglicky
The efficiency of Monte Carlo algorithms for light transport simulation is directly related to their ability to importance-sample the product of the illumination and reflectance in the rendering equation. Since the optimal sampling strategy would require knowledge about the transport solution itself, importance sampling most often follows only one of the known factors - BRDF or an approximation of the incident illumination. To address this issue, we propose to represent the illumination and the reflectance factors by the Gaussian mixture model (GMM), which we fit by using a combination of weighted expectation maximization and non-linear optimization methods. The GMM representation then allows us to obtain the resulting product distribution for importance sampling on-the-fly at each scene point. For its efficient evaluation and sampling we preform an up-front adaptive decimation of both factor mixtures. In comparison to state-of-the-art sampling methods, we show that our product importance sampling can lead to significantly better convergence in scenes with complex illumination and reflectance.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-18964S" target="_blank" >GA16-18964S: Adaptivní vzorkování a metody Markov chain Monte Carlo v simulaci transportu světla</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Graphics Forum [online]
ISSN
1467-8659
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
67-77
Kód UT WoS článku
000383444100008
EID výsledku v databázi Scopus
2-s2.0-84983314451