Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

OPTIMAL SOBOLEV TRACE EMBEDDINGS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10337160" target="_blank" >RIV/00216208:11320/16:10337160 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1090/tran/6606" target="_blank" >http://dx.doi.org/10.1090/tran/6606</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/6606" target="_blank" >10.1090/tran/6606</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    OPTIMAL SOBOLEV TRACE EMBEDDINGS

  • Popis výsledku v původním jazyce

    Optimal target spaces are exhibited in arbitrary-order Sobolev type embeddings for traces of n-dimensional functions on lower dimensional subspaces. Sobolev spaces built upon any rearrangement-invariant norm are allowed. A key step in our approach consists of showing that any trace embedding can be reduced to a one-dimensional inequality for a Hardy type operator depending only on n and on the dimension of the relevant subspace. This can be regarded as an analogue for trace embeddings of a well-known symmetrization principle for first-order Sobolev embeddings for compactly supported functions. The stability of the optimal target space under iterations of Sobolev trace embeddings is also established and is part of the proof of our reduction principle. As a consequence, we derive new trace embeddings, with improved (optimal) target spaces, for classical Sobolev, Lorentz-Sobolev and Orlicz-Sobolev spaces.

  • Název v anglickém jazyce

    OPTIMAL SOBOLEV TRACE EMBEDDINGS

  • Popis výsledku anglicky

    Optimal target spaces are exhibited in arbitrary-order Sobolev type embeddings for traces of n-dimensional functions on lower dimensional subspaces. Sobolev spaces built upon any rearrangement-invariant norm are allowed. A key step in our approach consists of showing that any trace embedding can be reduced to a one-dimensional inequality for a Hardy type operator depending only on n and on the dimension of the relevant subspace. This can be regarded as an analogue for trace embeddings of a well-known symmetrization principle for first-order Sobolev embeddings for compactly supported functions. The stability of the optimal target space under iterations of Sobolev trace embeddings is also established and is part of the proof of our reduction principle. As a consequence, we derive new trace embeddings, with improved (optimal) target spaces, for classical Sobolev, Lorentz-Sobolev and Orlicz-Sobolev spaces.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Svazek periodika

    368

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    34

  • Strana od-do

    8349-8382

  • Kód UT WoS článku

    000385432600002

  • EID výsledku v databázi Scopus