Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deeper Machine Translation and Evaluation for German

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10372124" target="_blank" >RIV/00216208:11320/16:10372124 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deeper Machine Translation and Evaluation for German

  • Popis výsledku v původním jazyce

    This paper describes a hybrid Machine Translation (MT) system built for translating from English to German in the domain of technical documentation. The system is based on three different MT engines (phrase-based SMT, RBMT, neural) that are joined by a selection mechanism that uses deep linguistic features within a machine learning process. It also presents a detailed source-driven manual error analysis we have performed using a dedicated &quot;test suite&quot; that contains selected examples of relevant phenomena. While automatic scores show huge differences between the engines, the overall average number or errors they (do not) make is very similar for all systems. However, the detailed error breakdown shows that the systems behave very differently concerning the various phenomena.

  • Název v anglickém jazyce

    Deeper Machine Translation and Evaluation for German

  • Popis výsledku anglicky

    This paper describes a hybrid Machine Translation (MT) system built for translating from English to German in the domain of technical documentation. The system is based on three different MT engines (phrase-based SMT, RBMT, neural) that are joined by a selection mechanism that uses deep linguistic features within a machine learning process. It also presents a detailed source-driven manual error analysis we have performed using a dedicated &quot;test suite&quot; that contains selected examples of relevant phenomena. While automatic scores show huge differences between the engines, the overall average number or errors they (do not) make is very similar for all systems. However, the detailed error breakdown shows that the systems behave very differently concerning the various phenomena.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2nd Deep Machine Translation Workshop

  • ISBN

    978-80-88132-02-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    10

  • Strana od-do

    29-38

  • Název nakladatele

    ÚFAL MFF UK

  • Místo vydání

    Praha, Czechia

  • Místo konání akce

    Lisboa, Portugal

  • Datum konání akce

    21. 10. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku