The Use of Residual Analysis to Improve the Error Rate Accuracy of Machine Translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922246" target="_blank" >RIV/00216275:25410/24:39922246 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-59524-3" target="_blank" >https://www.nature.com/articles/s41598-024-59524-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-59524-3" target="_blank" >10.1038/s41598-024-59524-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Use of Residual Analysis to Improve the Error Rate Accuracy of Machine Translation
Popis výsledku v původním jazyce
The aim of the study is to compare two different approaches to machine translation-statistical and neural-using automatic MT metrics of error rate and residuals. We examined four available online MT systems (statistical Google Translate, neural Google Translate, and two European commission's MT tools-statistical mt@ec and neural eTranslation) through their products (MT outputs). We propose using residual analysis to improve the accuracy of machine translation error rate. Residuals represent a new approach to comparing the quality of statistical and neural MT outputs. The study provides new insights into evaluating machine translation quality from English and German into Slovak through automatic error rate metrics. In the category of prediction and syntactic-semantic correlativeness, statistical MT showed a significantly higher error rate than neural MT. Conversely, in the category of lexical semantics, neural MT showed a significantly higher error rate than statistical MT. The results indicate that relying solely on the reference when determining MT quality is insufficient. However, when combined with residuals, it offers a more objective view of MT quality and facilitates the comparison of statistical MT and neural MT.
Název v anglickém jazyce
The Use of Residual Analysis to Improve the Error Rate Accuracy of Machine Translation
Popis výsledku anglicky
The aim of the study is to compare two different approaches to machine translation-statistical and neural-using automatic MT metrics of error rate and residuals. We examined four available online MT systems (statistical Google Translate, neural Google Translate, and two European commission's MT tools-statistical mt@ec and neural eTranslation) through their products (MT outputs). We propose using residual analysis to improve the accuracy of machine translation error rate. Residuals represent a new approach to comparing the quality of statistical and neural MT outputs. The study provides new insights into evaluating machine translation quality from English and German into Slovak through automatic error rate metrics. In the category of prediction and syntactic-semantic correlativeness, statistical MT showed a significantly higher error rate than neural MT. Conversely, in the category of lexical semantics, neural MT showed a significantly higher error rate than statistical MT. The results indicate that relying solely on the reference when determining MT quality is insufficient. However, when combined with residuals, it offers a more objective view of MT quality and facilitates the comparison of statistical MT and neural MT.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
9293
Kód UT WoS článku
001207399200105
EID výsledku v databázi Scopus
2-s2.0-85191073927