Adjoint-based anisotropic mesh adaptation for Discontinuous Galerkin Methods Using a Continuous Mesh Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360273" target="_blank" >RIV/00216208:11320/17:10360273 - isvavai.cz</a>
Výsledek na webu
<a href="https://arc.aiaa.org/doi/abs/10.2514/6.2017-3100" target="_blank" >https://arc.aiaa.org/doi/abs/10.2514/6.2017-3100</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2514/6.2017-3100" target="_blank" >10.2514/6.2017-3100</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adjoint-based anisotropic mesh adaptation for Discontinuous Galerkin Methods Using a Continuous Mesh Model
Popis výsledku v původním jazyce
In this paper we propose an adjoint-based mesh optimization method for conservation laws, which may be used with any numerical method based on piecewise polynomials. The method uses a continuous mesh framework, where a global optimization scheme was formulated with respect to the error in the numerical solution, measured in any $L^q$ norm. The novelty of the present work is the extension to more general optimization targets. Here, any solution-dependent functional, which is compatible with an adjoint equation, may be the target of the continuous-mesh optimization. We present the rationale behind the formulation of the optimization problem, with particular emphasis on the continuous mesh model, and the relevant adjoint-based error estimate. We also present numerical results, demonstrating the viability of the scheme.
Název v anglickém jazyce
Adjoint-based anisotropic mesh adaptation for Discontinuous Galerkin Methods Using a Continuous Mesh Model
Popis výsledku anglicky
In this paper we propose an adjoint-based mesh optimization method for conservation laws, which may be used with any numerical method based on piecewise polynomials. The method uses a continuous mesh framework, where a global optimization scheme was formulated with respect to the error in the numerical solution, measured in any $L^q$ norm. The novelty of the present work is the extension to more general optimization targets. Here, any solution-dependent functional, which is compatible with an adjoint equation, may be the target of the continuous-mesh optimization. We present the rationale behind the formulation of the optimization problem, with particular emphasis on the continuous mesh model, and the relevant adjoint-based error estimate. We also present numerical results, demonstrating the viability of the scheme.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
23rd AIAA Computational Fluid Dynamics Conference
ISBN
978-1-62410-506-7
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
19
Strana od-do
1-19
Název nakladatele
American Institute of Aeronautics and Astronautics Inc, AIAA
Místo vydání
Denver,USA
Místo konání akce
Denver
Datum konání akce
5. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—