A continuous hp-mesh model for adaptive discontinuous Galerkin schemes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384597" target="_blank" >RIV/00216208:11320/18:10384597 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S016892741730209X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016892741730209X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2017.09.015" target="_blank" >10.1016/j.apnum.2017.09.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A continuous hp-mesh model for adaptive discontinuous Galerkin schemes
Popis výsledku v původním jazyce
We present a continuous-mesh model for anisotropic hp-adaptation in the context of numerical methods using discontinuous piecewise polynomial approximation spaces. The present work is an extension of a previously proposed mesh-only (h-)adaptation method which uses both a continuous mesh, and a corresponding high-order continuous interpolation operator. In this previous formulation local anisotropy and global mesh density distribution may be determined by analytical optimization techniques, operating on the continuous mesh model. The addition of varying polynomial degree necessitates a departure from purely analytic optimization. However, we show in this article that a global optimization problem may still be formulated and solved by analytic optimization, adding only the necessity to solve numerically a single nonlinear algebraic equation per adaptation step to satisfy a constraint on the total number of degrees of freedom. The result is a tailorsuited continuous mesh with respect to a model for the global interpolation error measured in the Lq-norm. From the continuous mesh a discrete triangular mesh may be generated using any metric-based mesh generator.
Název v anglickém jazyce
A continuous hp-mesh model for adaptive discontinuous Galerkin schemes
Popis výsledku anglicky
We present a continuous-mesh model for anisotropic hp-adaptation in the context of numerical methods using discontinuous piecewise polynomial approximation spaces. The present work is an extension of a previously proposed mesh-only (h-)adaptation method which uses both a continuous mesh, and a corresponding high-order continuous interpolation operator. In this previous formulation local anisotropy and global mesh density distribution may be determined by analytical optimization techniques, operating on the continuous mesh model. The addition of varying polynomial degree necessitates a departure from purely analytic optimization. However, we show in this article that a global optimization problem may still be formulated and solved by analytic optimization, adding only the necessity to solve numerically a single nonlinear algebraic equation per adaptation step to satisfy a constraint on the total number of degrees of freedom. The result is a tailorsuited continuous mesh with respect to a model for the global interpolation error measured in the Lq-norm. From the continuous mesh a discrete triangular mesh may be generated using any metric-based mesh generator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01747S" target="_blank" >GA17-01747S: Teorie a numerická analýza sdružených problémů dynamiky tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
February 2018
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000417668200001
EID výsledku v databázi Scopus
2-s2.0-85030834163