Interval convex quadratic programming problems in a general form
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10365246" target="_blank" >RIV/00216208:11320/17:10365246 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10100-016-0445-8" target="_blank" >http://dx.doi.org/10.1007/s10100-016-0445-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10100-016-0445-8" target="_blank" >10.1007/s10100-016-0445-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interval convex quadratic programming problems in a general form
Popis výsledku v původním jazyce
This paper addresses the problem of computing the minimal and the maximal optimal value of a convex quadratic programming (CQP) problem when the coefficients are subject to perturbations in given intervals. Contrary to the previous results concerning on some special forms of CQP only, we present a unified method to deal with interval CQP problems. The problem can be formulated by using equation, inequalities or both, and by using sign-restricted variables or sign-unrestricted variables or both. We propose simple formulas for calculating the minimal and maximal optimal values. Due to NP-hardness of the problem, the formulas are exponential with respect to some characteristics. On the other hand, there are large sub-classes of problems that are polynomially solvable. For the general intractable case we propose an approximation algorithm. We illustrate our approach by a geometric problem of determining the distance of uncertain polytopes. Eventually, we extend our results to quadratically constrained CQP, and state some open problems.
Název v anglickém jazyce
Interval convex quadratic programming problems in a general form
Popis výsledku anglicky
This paper addresses the problem of computing the minimal and the maximal optimal value of a convex quadratic programming (CQP) problem when the coefficients are subject to perturbations in given intervals. Contrary to the previous results concerning on some special forms of CQP only, we present a unified method to deal with interval CQP problems. The problem can be formulated by using equation, inequalities or both, and by using sign-restricted variables or sign-unrestricted variables or both. We propose simple formulas for calculating the minimal and maximal optimal values. Due to NP-hardness of the problem, the formulas are exponential with respect to some characteristics. On the other hand, there are large sub-classes of problems that are polynomially solvable. For the general intractable case we propose an approximation algorithm. We illustrate our approach by a geometric problem of determining the distance of uncertain polytopes. Eventually, we extend our results to quadratically constrained CQP, and state some open problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-10660S" target="_blank" >GA13-10660S: Intervalové metody pro optimalizační úlohy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Operations Research
ISSN
1435-246X
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
725-737
Kód UT WoS článku
000407369000012
EID výsledku v databázi Scopus
—