A Communication Game Related to the Sensitivity Conjecture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368746" target="_blank" >RIV/00216208:11320/17:10368746 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.theoryofcomputing.org/articles/v013a007/" target="_blank" >http://www.theoryofcomputing.org/articles/v013a007/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4086/toc.2017.v013a007" target="_blank" >10.4086/toc.2017.v013a007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Communication Game Related to the Sensitivity Conjecture
Popis výsledku v původním jazyce
One of the major outstanding foundational problems about Boolean functions is the sensitivity conjecture, which asserts that the degree of a Boolean function is bounded above by some fixed power of its sensitivity. We propose an attack on the sensitivity conjecture in terms of a novel two-player communication game. A lower bound of the form n^Omega(1) on the cost of this game would imply the sensitivity conjecture. To investigate the problem of bounding the cost of the game, three natural (stronger) variants of the question are considered. For two of these variants, protocols are presented that show that the hoped-for lower bound does not hold. These protocols satisfy a certain monotonicity property, and we show that the cost of any monotone protocol satisfies a strong lower bound in the original variant. There is an easy upper bound of sqrt(n) on the cost of the game. We also improve slightly on this upper bound. This game and its connection to the sensitivity conjecture was independently discovered by Andy Drucker (arXiv:1706.07890).
Název v anglickém jazyce
A Communication Game Related to the Sensitivity Conjecture
Popis výsledku anglicky
One of the major outstanding foundational problems about Boolean functions is the sensitivity conjecture, which asserts that the degree of a Boolean function is bounded above by some fixed power of its sensitivity. We propose an attack on the sensitivity conjecture in terms of a novel two-player communication game. A lower bound of the form n^Omega(1) on the cost of this game would imply the sensitivity conjecture. To investigate the problem of bounding the cost of the game, three natural (stronger) variants of the question are considered. For two of these variants, protocols are presented that show that the hoped-for lower bound does not hold. These protocols satisfy a certain monotonicity property, and we show that the cost of any monotone protocol satisfies a strong lower bound in the original variant. There is an easy upper bound of sqrt(n) on the cost of the game. We also improve slightly on this upper bound. This game and its connection to the sensitivity conjecture was independently discovered by Andy Drucker (arXiv:1706.07890).
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing [online]
ISSN
1557-2862
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—