Flexible Latin directed triple systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368800" target="_blank" >RIV/00216208:11320/17:10368800 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flexible Latin directed triple systems
Popis výsledku v původním jazyce
It is well known that, given a Steiner triple system, a quasigroup can be formed by defining an operation . by the identities x.x = x and x.y = z where z is the third point in the block containing the pair {x,y}. The same is true for a Mendelsohn triple system where the pair (x,y) is considered to be ordered. But it is not true in general for directed triple systems. However directed triple systems which form quasigroups under this operation do exist and we call these Latin directed triple systems. The quasigroups associated with Steiner and Mendelsohn triple systems satisfy the flexible law x.(y.x) = (x.y).x but those associated with Latin directed triple systems need not. In a previous paper, [Discrete Mathematics 312 (2012), 597-607], we studied non-flexible Latin directed triple systems. In this paper we turn our attention to flexible Latin directed triple systems
Název v anglickém jazyce
Flexible Latin directed triple systems
Popis výsledku anglicky
It is well known that, given a Steiner triple system, a quasigroup can be formed by defining an operation . by the identities x.x = x and x.y = z where z is the third point in the block containing the pair {x,y}. The same is true for a Mendelsohn triple system where the pair (x,y) is considered to be ordered. But it is not true in general for directed triple systems. However directed triple systems which form quasigroups under this operation do exist and we call these Latin directed triple systems. The quasigroups associated with Steiner and Mendelsohn triple systems satisfy the flexible law x.(y.x) = (x.y).x but those associated with Latin directed triple systems need not. In a previous paper, [Discrete Mathematics 312 (2012), 597-607], we studied non-flexible Latin directed triple systems. In this paper we turn our attention to flexible Latin directed triple systems
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/VF20102015006" target="_blank" >VF20102015006: Dešifrování a dekódování digitálních stop</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Utilitas Mathematica
ISSN
0315-3681
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
104
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
16
Strana od-do
31-46
Kód UT WoS článku
000410716800004
EID výsledku v databázi Scopus
—