CYCLIC AND ROTATIONAL LATIN HYBRID TRIPLE SYSTEMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372212" target="_blank" >RIV/00216208:11320/17:10372212 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/ms-2017-0032" target="_blank" >http://dx.doi.org/10.1515/ms-2017-0032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2017-0032" target="_blank" >10.1515/ms-2017-0032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CYCLIC AND ROTATIONAL LATIN HYBRID TRIPLE SYSTEMS
Popis výsledku v původním jazyce
It is well known that given a Steiner triple system (STS) one can define a binary operation ASTERISK OPERATOR upon its base set by assigning x ASTERISK OPERATOR x = x for all x and x ASTERISK OPERATOR y = z, where z is the third point in the block containing the pair {x, y}. The same can be done for Mendelsohn triple systems (MTS), directed triple systems (DTS) as well as hybrid triple systems (HTS), where (x, y) is considered to be ordered. In the case of STSs and MTSs the operation yields a quasigroup, however this is not necessarily the case for DTSs and HTSs. A DTS or an HTS which induces a quasigroup is said to be Latin. In this paper we study Latin DTSs and Latin HTSs which admit a cyclic or a 1-rotational automorphism. We prove the existence spectra for these systems as well as the existence spectra for their pure variants. As a side result we also obtain the existence spectra of pure cyclic and pure 1-rotational MTSs.
Název v anglickém jazyce
CYCLIC AND ROTATIONAL LATIN HYBRID TRIPLE SYSTEMS
Popis výsledku anglicky
It is well known that given a Steiner triple system (STS) one can define a binary operation ASTERISK OPERATOR upon its base set by assigning x ASTERISK OPERATOR x = x for all x and x ASTERISK OPERATOR y = z, where z is the third point in the block containing the pair {x, y}. The same can be done for Mendelsohn triple systems (MTS), directed triple systems (DTS) as well as hybrid triple systems (HTS), where (x, y) is considered to be ordered. In the case of STSs and MTSs the operation yields a quasigroup, however this is not necessarily the case for DTSs and HTSs. A DTS or an HTS which induces a quasigroup is said to be Latin. In this paper we study Latin DTSs and Latin HTSs which admit a cyclic or a 1-rotational automorphism. We prove the existence spectra for these systems as well as the existence spectra for their pure variants. As a side result we also obtain the existence spectra of pure cyclic and pure 1-rotational MTSs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
18
Strana od-do
1055-1072
Kód UT WoS článku
000414656000001
EID výsledku v databázi Scopus
—