Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369990" target="_blank" >RIV/00216208:11320/17:10369990 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S0963548316000420" target="_blank" >http://dx.doi.org/10.1017/S0963548316000420</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548316000420" target="_blank" >10.1017/S0963548316000420</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability
Popis výsledku v původním jazyce
We investigate the asymptotic version of the Erdos-Ko-Rado theorem for the random k-uniform hypergraph H-k(n, p). For 2 <= k(n) <= n/2, let N = (n/k) and D = (n-k/k). We show that with probability tending to 1 as n -> infinity, the largest intersecting subhypergraph of Hk( n, p) has size (1+o(1))p(n)(k)-N for any p >> n/k ln(2) (n/k) D-1. This lower bound on p is asymptotically best possible for k = Theta(n). For this range of k and p, we are able to show stability as well. A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D-1 << p << ( n/k)1(-epsilon)D(-1), the largest intersecting subhypergraph of Hk(n, p) has size Theta(ln(pD) ND-1), provided that k >> root nlnn. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in H-k(n, p), for essentially all values of p and k.
Název v anglickém jazyce
Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability
Popis výsledku anglicky
We investigate the asymptotic version of the Erdos-Ko-Rado theorem for the random k-uniform hypergraph H-k(n, p). For 2 <= k(n) <= n/2, let N = (n/k) and D = (n-k/k). We show that with probability tending to 1 as n -> infinity, the largest intersecting subhypergraph of Hk( n, p) has size (1+o(1))p(n)(k)-N for any p >> n/k ln(2) (n/k) D-1. This lower bound on p is asymptotically best possible for k = Theta(n). For this range of k and p, we are able to show stability as well. A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D-1 << p << ( n/k)1(-epsilon)D(-1), the largest intersecting subhypergraph of Hk(n, p) has size Theta(ln(pD) ND-1), provided that k >> root nlnn. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in H-k(n, p), for essentially all values of p and k.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Combinatorics, Probability & Computing
ISSN
0963-5483
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
406-422
Kód UT WoS článku
000398967400004
EID výsledku v databázi Scopus
—