Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00422134" target="_blank" >RIV/67985840:_____/13:00422134 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/TIT.2013.2270275" target="_blank" >http://dx.doi.org/10.1109/TIT.2013.2270275</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIT.2013.2270275" target="_blank" >10.1109/TIT.2013.2270275</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

  • Popis výsledku v původním jazyce

    We bound the minimum number of wires needed to compute any (asymptotically good) error-correcting code C : {0, 1}(Omega(n)) -> {0, 1}(n) with minimum distance Omega(n), using unbounded fan-in circuits of depth with arbitrary gates. Our main results are:1) if d = 2, then w = Theta(n(lg n/lg lg n)(2)); 2) if d = 3, then w = Theta(n lg lg n); 3) if d = 2k or d = 2k + 1 for some integer k >= 2, then w = Theta(n lambda(k)(n)), where lambda(1)(n) = inverted rightlg ninverted left perpendicular lambda(i+1)(n)= lambda(i)*(n), and the * operation gives how many times one has to iterate the function lambda(i) to reach a value at most 1 from the argument; and 4) if d = lg* n, then w = O(n). For depth d = 2, our Omega(n(lg n/lg lg n)(2)) lower bound gives the largest known lower bound for computing any linear map. The upper bounds imply that a (necessarily dense) generator matrix for our code can be written as the product of two sparse matrices.

  • Název v anglickém jazyce

    Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

  • Popis výsledku anglicky

    We bound the minimum number of wires needed to compute any (asymptotically good) error-correcting code C : {0, 1}(Omega(n)) -> {0, 1}(n) with minimum distance Omega(n), using unbounded fan-in circuits of depth with arbitrary gates. Our main results are:1) if d = 2, then w = Theta(n(lg n/lg lg n)(2)); 2) if d = 3, then w = Theta(n lg lg n); 3) if d = 2k or d = 2k + 1 for some integer k >= 2, then w = Theta(n lambda(k)(n)), where lambda(1)(n) = inverted rightlg ninverted left perpendicular lambda(i+1)(n)= lambda(i)*(n), and the * operation gives how many times one has to iterate the function lambda(i) to reach a value at most 1 from the argument; and 4) if d = lg* n, then w = O(n). For depth d = 2, our Omega(n(lg n/lg lg n)(2)) lower bound gives the largest known lower bound for computing any linear map. The upper bounds imply that a (necessarily dense) generator matrix for our code can be written as the product of two sparse matrices.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA100190902" target="_blank" >IAA100190902: Matematická logika, složitost a algoritmy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Information Theory

  • ISSN

    0018-9448

  • e-ISSN

  • Svazek periodika

    59

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    6611-6627

  • Kód UT WoS článku

    000324573500028

  • EID výsledku v databázi Scopus