Relative BGG sequences; II. BGG machinery and invariant operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370120" target="_blank" >RIV/00216208:11320/17:10370120 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.aim.2017.09.016" target="_blank" >http://dx.doi.org/10.1016/j.aim.2017.09.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2017.09.016" target="_blank" >10.1016/j.aim.2017.09.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relative BGG sequences; II. BGG machinery and invariant operators
Popis výsledku v původním jazyce
For a real or complex semisimple Lie group G and two nested parabolic subgroups Q subset of P subset of G, we study parabolic geometries of type (G, Q). Associated to the group P, we introduce the classes of relative natural bundles and of relative tractor bundles and construct some basic invariant differential operators on such bundles. We define a (rather weak) notion of "compressability" for operators acting on relative differential forms with values in a relative tractor bundle. Then we develop a general machinery which converts a compressable operator to an operator on bundles associated to completely reducible representations on relative Lie algebra homology groups. Applying this machinery to a specific compressable invariant differential operator of order one, we obtain a relative version of BGG (Bernstein-Gelfand-Gelfand) sequences. All our constructions apply in the case P = G, producing new and simpler proofs in the case of standard BGG sequences. We characterize cases in which the relative BGG sequences are complexes or even fine resolutions of certain sheaves and describe these sheaves. We show that this gives constructions of new invariant differential operators as well as of new subcomplexes in certain curved BGG sequences. The results are made explicit in the case of generalized path geometries.
Název v anglickém jazyce
Relative BGG sequences; II. BGG machinery and invariant operators
Popis výsledku anglicky
For a real or complex semisimple Lie group G and two nested parabolic subgroups Q subset of P subset of G, we study parabolic geometries of type (G, Q). Associated to the group P, we introduce the classes of relative natural bundles and of relative tractor bundles and construct some basic invariant differential operators on such bundles. We define a (rather weak) notion of "compressability" for operators acting on relative differential forms with values in a relative tractor bundle. Then we develop a general machinery which converts a compressable operator to an operator on bundles associated to completely reducible representations on relative Lie algebra homology groups. Applying this machinery to a specific compressable invariant differential operator of order one, we obtain a relative version of BGG (Bernstein-Gelfand-Gelfand) sequences. All our constructions apply in the case P = G, producing new and simpler proofs in the case of standard BGG sequences. We characterize cases in which the relative BGG sequences are complexes or even fine resolutions of certain sheaves and describe these sheaves. We show that this gives constructions of new invariant differential operators as well as of new subcomplexes in certain curved BGG sequences. The results are made explicit in the case of generalized path geometries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Svazek periodika
320
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
54
Strana od-do
1009-1062
Kód UT WoS článku
000413884400029
EID výsledku v databázi Scopus
—