Regularity and approximation of strong solutions to rate-independent systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372070" target="_blank" >RIV/00216208:11320/17:10372070 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0218202517500518" target="_blank" >http://dx.doi.org/10.1142/S0218202517500518</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202517500518" target="_blank" >10.1142/S0218202517500518</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regularity and approximation of strong solutions to rate-independent systems
Popis výsledku v původním jazyce
Rate-independent systems arise in a number of applications. Usually, weak solutions to such problems with potentially very low regularity are considered, requiring mathematical techniques capable of handling nonsmooth functions. In this work, we prove the existence of Holder-regular strong solutions for a class of rate-independent systems. We also establish additional higher regularity results that guarantee the uniqueness of strong solutions. The proof proceeds via a time-discrete Rothe approximation and careful elliptic regularity estimates depending in a quantitative way on the (local) convexity of the potential featuring in the model. In the second part of the paper, we show that our strong solutions may be approximated by a fully discrete numerical scheme based on a spatial finite element discretization, whose rate of convergence is consistent with the regularity of strong solutions whose existence and uniqueness are established.
Název v anglickém jazyce
Regularity and approximation of strong solutions to rate-independent systems
Popis výsledku anglicky
Rate-independent systems arise in a number of applications. Usually, weak solutions to such problems with potentially very low regularity are considered, requiring mathematical techniques capable of handling nonsmooth functions. In this work, we prove the existence of Holder-regular strong solutions for a class of rate-independent systems. We also establish additional higher regularity results that guarantee the uniqueness of strong solutions. The proof proceeds via a time-discrete Rothe approximation and careful elliptic regularity estimates depending in a quantitative way on the (local) convexity of the potential featuring in the model. In the second part of the paper, we show that our strong solutions may be approximated by a fully discrete numerical scheme based on a spatial finite element discretization, whose rate of convergence is consistent with the regularity of strong solutions whose existence and uniqueness are established.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
46
Strana od-do
2511-2556
Kód UT WoS článku
000413371300005
EID výsledku v databázi Scopus
2-s2.0-85030840996