On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10378693" target="_blank" >RIV/00216208:11320/18:10378693 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.nonrwa.2017.10.008" target="_blank" >https://doi.org/10.1016/j.nonrwa.2017.10.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2017.10.008" target="_blank" >10.1016/j.nonrwa.2017.10.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions
Popis výsledku v původním jazyce
We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the kinematic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the L-infinity-truncation technique to approximate the velocity field.
Název v anglickém jazyce
On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions
Popis výsledku anglicky
We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the kinematic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the L-infinity-truncation technique to approximate the velocity field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
152-178
Kód UT WoS článku
000424721700008
EID výsledku v databázi Scopus
2-s2.0-85033225330