Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Randomized feasible interpolation and monotone circuits with a local oracle

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383609" target="_blank" >RIV/00216208:11320/18:10383609 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1142/S0219061318500125" target="_blank" >https://doi.org/10.1142/S0219061318500125</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219061318500125" target="_blank" >10.1142/S0219061318500125</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Randomized feasible interpolation and monotone circuits with a local oracle

  • Popis výsledku v původním jazyce

    The feasible interpolation theorem for semantic derivations from [J. Krajicek, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62(2) (1997) 457-486] allows to derive from some short semantic derivations (e.g. in resolution) of the disjointness of two NP sets U and V a small communication protocol (a general dag-like protocol in the sense of Krajicek (1997) computing the Karchmer-Wigderson multi-function KW[U, V] associated with the sets, and such a protocol further yields a small circuit separating U from V. When U is closed upwards, the protocol computes the monotone Karchmer-Wigderson multi-function KWm [U,V] and the resulting circuit is monotone. Krajicek [Interpolation by a game, Math. Logic Quart. 44(4) (1998) 450-458] extended the feasible interpolation theorem to a larger class of semantic derivations using the notion of a real communication complexity (e.g. to the cutting planes proof system CP). In this paper, we generalize the method to a still larger class of semantic derivations by allowing randomized protocols. We also introduce an extension of the monotone circuit model, monotone circuits with a local oracle (CLOs), that, does correspond to communication protocols for KWm [U, V] making errors. The new randomized feasible interpolation thus shows that a short semantic derivation (from a certain class of derivations larger than in the original method) of the disjointness of U, V, U closed upwards, yields a small randomized protocol for KWm [U, V] and hence a small monotone CLO separating the two sets. This research is motivated by the open problem to establish a lower bound for proof system R(LIN/F-2) operating with clauses formed by linear Boolean functions over F-2. The new randomized feasible interpolation applies to this proof system and also to (the semantic versions of) cutting planes CP, to small width resolution over CP of Krajfeek [Discretely ordered modules as a first-order extension of the cutting planes proof system, J. Symbolic Logic 63(4) (1998) 1582-1596] (system R(CP)) and to random resolution RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Symbolic Logic 79(2) (2014) 496-525]. The method does not yield yet lengths-of-proofs lower bounds; for this it is necessary to establish lower bounds for randomized protocols or for monotone CLOs.

  • Název v anglickém jazyce

    Randomized feasible interpolation and monotone circuits with a local oracle

  • Popis výsledku anglicky

    The feasible interpolation theorem for semantic derivations from [J. Krajicek, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62(2) (1997) 457-486] allows to derive from some short semantic derivations (e.g. in resolution) of the disjointness of two NP sets U and V a small communication protocol (a general dag-like protocol in the sense of Krajicek (1997) computing the Karchmer-Wigderson multi-function KW[U, V] associated with the sets, and such a protocol further yields a small circuit separating U from V. When U is closed upwards, the protocol computes the monotone Karchmer-Wigderson multi-function KWm [U,V] and the resulting circuit is monotone. Krajicek [Interpolation by a game, Math. Logic Quart. 44(4) (1998) 450-458] extended the feasible interpolation theorem to a larger class of semantic derivations using the notion of a real communication complexity (e.g. to the cutting planes proof system CP). In this paper, we generalize the method to a still larger class of semantic derivations by allowing randomized protocols. We also introduce an extension of the monotone circuit model, monotone circuits with a local oracle (CLOs), that, does correspond to communication protocols for KWm [U, V] making errors. The new randomized feasible interpolation thus shows that a short semantic derivation (from a certain class of derivations larger than in the original method) of the disjointness of U, V, U closed upwards, yields a small randomized protocol for KWm [U, V] and hence a small monotone CLO separating the two sets. This research is motivated by the open problem to establish a lower bound for proof system R(LIN/F-2) operating with clauses formed by linear Boolean functions over F-2. The new randomized feasible interpolation applies to this proof system and also to (the semantic versions of) cutting planes CP, to small width resolution over CP of Krajfeek [Discretely ordered modules as a first-order extension of the cutting planes proof system, J. Symbolic Logic 63(4) (1998) 1582-1596] (system R(CP)) and to random resolution RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Symbolic Logic 79(2) (2014) 496-525]. The method does not yield yet lengths-of-proofs lower bounds; for this it is necessary to establish lower bounds for randomized protocols or for monotone CLOs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Logic

  • ISSN

    0219-0613

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    27

  • Strana od-do

  • Kód UT WoS článku

    000450623400007

  • EID výsledku v databázi Scopus

    2-s2.0-85052625536