Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On protocols for monotone feasible interpolation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574198" target="_blank" >RIV/67985840:_____/23:00574198 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/23:10467112

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3583754" target="_blank" >https://doi.org/10.1145/3583754</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3583754" target="_blank" >10.1145/3583754</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On protocols for monotone feasible interpolation

  • Popis výsledku v původním jazyce

    Dag-like communication protocols, a generalization of the classical tree-like communication protocols, are useful objects in the realm of proof complexity (most importantly for monotone feasible interpolation) and circuit complexity. We consider three kinds of protocols in this article (d is the degree of a protocol): - IEQ-d-dags: feasible sets of these protocols are described by inequality which means that the feasible sets are combinatorial triangles, these protocols are also called triangle-dags in the literature, - EQ-d-dags: feasible sets are described by equality, and - c-IEQ-d-dags: feasible sets are described by a conjunction of c inequalities.Garg, Göös, Kamath, and Sokolov (Theory of Computing, 2020) mentioned all these protocols, and they noted that EQ-d-dags are a special case of c-IEQ-d-dags. The exact relationship between these types of protocols is unclear. As our main contribution, we prove the following statement: EQ-2-dags can efficiently simulate c-IEQ-d-dags when c and d are constants. This implies that EQ-2-dags are at least as strong as IEQ-d-dags and that EQ-2-dags have the same strength as c-IEQ-d-dags for c ≥ 2 (because 2-IEQ-2-dags can trivially simulate EQ-2-dags).Hrubeš and Pudlák (Information Processing Letters, 2018) proved that IEQ-d-dags over the monotone Karchmer-Wigderson relation are equivalent to monotone real circuits which implies that we have exponential lower bounds for these protocols. Lower bounds for EQ-2-dags would directly imply lower bounds for the proof system R(LIN).

  • Název v anglickém jazyce

    On protocols for monotone feasible interpolation

  • Popis výsledku anglicky

    Dag-like communication protocols, a generalization of the classical tree-like communication protocols, are useful objects in the realm of proof complexity (most importantly for monotone feasible interpolation) and circuit complexity. We consider three kinds of protocols in this article (d is the degree of a protocol): - IEQ-d-dags: feasible sets of these protocols are described by inequality which means that the feasible sets are combinatorial triangles, these protocols are also called triangle-dags in the literature, - EQ-d-dags: feasible sets are described by equality, and - c-IEQ-d-dags: feasible sets are described by a conjunction of c inequalities.Garg, Göös, Kamath, and Sokolov (Theory of Computing, 2020) mentioned all these protocols, and they noted that EQ-d-dags are a special case of c-IEQ-d-dags. The exact relationship between these types of protocols is unclear. As our main contribution, we prove the following statement: EQ-2-dags can efficiently simulate c-IEQ-d-dags when c and d are constants. This implies that EQ-2-dags are at least as strong as IEQ-d-dags and that EQ-2-dags have the same strength as c-IEQ-d-dags for c ≥ 2 (because 2-IEQ-2-dags can trivially simulate EQ-2-dags).Hrubeš and Pudlák (Information Processing Letters, 2018) proved that IEQ-d-dags over the monotone Karchmer-Wigderson relation are equivalent to monotone real circuits which implies that we have exponential lower bounds for these protocols. Lower bounds for EQ-2-dags would directly imply lower bounds for the proof system R(LIN).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Computation Theory

  • ISSN

    1942-3454

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    1-2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    2

  • Kód UT WoS článku

    001020428600002

  • EID výsledku v databázi Scopus

    2-s2.0-85164243386