On protocols for monotone feasible interpolation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574198" target="_blank" >RIV/67985840:_____/23:00574198 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10467112
Výsledek na webu
<a href="https://doi.org/10.1145/3583754" target="_blank" >https://doi.org/10.1145/3583754</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3583754" target="_blank" >10.1145/3583754</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On protocols for monotone feasible interpolation
Popis výsledku v původním jazyce
Dag-like communication protocols, a generalization of the classical tree-like communication protocols, are useful objects in the realm of proof complexity (most importantly for monotone feasible interpolation) and circuit complexity. We consider three kinds of protocols in this article (d is the degree of a protocol): - IEQ-d-dags: feasible sets of these protocols are described by inequality which means that the feasible sets are combinatorial triangles, these protocols are also called triangle-dags in the literature, - EQ-d-dags: feasible sets are described by equality, and - c-IEQ-d-dags: feasible sets are described by a conjunction of c inequalities.Garg, Göös, Kamath, and Sokolov (Theory of Computing, 2020) mentioned all these protocols, and they noted that EQ-d-dags are a special case of c-IEQ-d-dags. The exact relationship between these types of protocols is unclear. As our main contribution, we prove the following statement: EQ-2-dags can efficiently simulate c-IEQ-d-dags when c and d are constants. This implies that EQ-2-dags are at least as strong as IEQ-d-dags and that EQ-2-dags have the same strength as c-IEQ-d-dags for c ≥ 2 (because 2-IEQ-2-dags can trivially simulate EQ-2-dags).Hrubeš and Pudlák (Information Processing Letters, 2018) proved that IEQ-d-dags over the monotone Karchmer-Wigderson relation are equivalent to monotone real circuits which implies that we have exponential lower bounds for these protocols. Lower bounds for EQ-2-dags would directly imply lower bounds for the proof system R(LIN).
Název v anglickém jazyce
On protocols for monotone feasible interpolation
Popis výsledku anglicky
Dag-like communication protocols, a generalization of the classical tree-like communication protocols, are useful objects in the realm of proof complexity (most importantly for monotone feasible interpolation) and circuit complexity. We consider three kinds of protocols in this article (d is the degree of a protocol): - IEQ-d-dags: feasible sets of these protocols are described by inequality which means that the feasible sets are combinatorial triangles, these protocols are also called triangle-dags in the literature, - EQ-d-dags: feasible sets are described by equality, and - c-IEQ-d-dags: feasible sets are described by a conjunction of c inequalities.Garg, Göös, Kamath, and Sokolov (Theory of Computing, 2020) mentioned all these protocols, and they noted that EQ-d-dags are a special case of c-IEQ-d-dags. The exact relationship between these types of protocols is unclear. As our main contribution, we prove the following statement: EQ-2-dags can efficiently simulate c-IEQ-d-dags when c and d are constants. This implies that EQ-2-dags are at least as strong as IEQ-d-dags and that EQ-2-dags have the same strength as c-IEQ-d-dags for c ≥ 2 (because 2-IEQ-2-dags can trivially simulate EQ-2-dags).Hrubeš and Pudlák (Information Processing Letters, 2018) proved that IEQ-d-dags over the monotone Karchmer-Wigderson relation are equivalent to monotone real circuits which implies that we have exponential lower bounds for these protocols. Lower bounds for EQ-2-dags would directly imply lower bounds for the proof system R(LIN).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computation Theory
ISSN
1942-3454
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
2
Kód UT WoS článku
001020428600002
EID výsledku v databázi Scopus
2-s2.0-85164243386