A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385427" target="_blank" >RIV/00216208:11320/18:10385427 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/18:00498635
Výsledek na webu
<a href="https://doi.org/10.1007/s00033-018-0932-y" target="_blank" >https://doi.org/10.1007/s00033-018-0932-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-018-0932-y" target="_blank" >10.1007/s00033-018-0932-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis
Popis výsledku v původním jazyce
A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.
Název v anglickém jazyce
A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis
Popis výsledku anglicky
A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-03823S" target="_blank" >GA16-03823S: Homogenizace a víceškálové počítačové modelování proudění a nelineárních interakcí v porézních inteligentních prostředích</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Zeitschrift für Angewandte Mathematik und Physik
ISSN
0044-2275
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
34
Strana od-do
—
Kód UT WoS článku
000431757800001
EID výsledku v databázi Scopus
2-s2.0-85045634793