Bounded Stub Resolution for Some Maximal 1-Planar Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386670" target="_blank" >RIV/00216208:11320/18:10386670 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-74180-2_18" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-74180-2_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-74180-2_18" target="_blank" >10.1007/978-3-319-74180-2_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounded Stub Resolution for Some Maximal 1-Planar Graphs
Popis výsledku v původním jazyce
The resolution of a drawing plays a crucial role when defining criteria for its quality and readability. In the past, grid resolution, edge-length resolution, angular resolution and crossing resolution have been investigated. We continue the study of the recently introduced stub resolution as an additional aesthetic criterion for nonplanar drawings of graphs. A crossed edge is divided into parts, called stubs, which should not be too short for the sake of readability. Thus, the stub resolution of a drawing is defined as the minimum ratio between the length of a stub and the length of the entire edge containing that stub, over all the edges of the drawing. As a meaningful graph class, where crossings are naturally involved, we consider 1-planar graphs (i.e., graphs that allow planar drawings in which every edge is crossed at most once). In an attempt to prove the conjecture that the stub resolution of 1-planar graphs is bounded, we closely investigate a class of maximal 1-planar graphs arising from double-wheels. We show that each such graph allows a straight-line 1-planar drawing with stub resolution 1/5.
Název v anglickém jazyce
Bounded Stub Resolution for Some Maximal 1-Planar Graphs
Popis výsledku anglicky
The resolution of a drawing plays a crucial role when defining criteria for its quality and readability. In the past, grid resolution, edge-length resolution, angular resolution and crossing resolution have been investigated. We continue the study of the recently introduced stub resolution as an additional aesthetic criterion for nonplanar drawings of graphs. A crossed edge is divided into parts, called stubs, which should not be too short for the sake of readability. Thus, the stub resolution of a drawing is defined as the minimum ratio between the length of a stub and the length of the entire edge containing that stub, over all the edges of the drawing. As a meaningful graph class, where crossings are naturally involved, we consider 1-planar graphs (i.e., graphs that allow planar drawings in which every edge is crossed at most once). In an attempt to prove the conjecture that the stub resolution of 1-planar graphs is bounded, we closely investigate a class of maximal 1-planar graphs arising from double-wheels. We show that each such graph allows a straight-line 1-planar drawing with stub resolution 1/5.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Algorithms and Discrete Applied Mathematics
ISBN
978-3-319-74179-6
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
214-220
Název nakladatele
SPRINGER
Místo vydání
Cham
Místo konání akce
Guwahati, India
Datum konání akce
15. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—