The Stub Resolution of 1-Planar Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420251" target="_blank" >RIV/00216208:11320/20:10420251 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-39881-1_15" target="_blank" >https://doi.org/10.1007/978-3-030-39881-1_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-39881-1_15" target="_blank" >10.1007/978-3-030-39881-1_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Stub Resolution of 1-Planar Graphs
Popis výsledku v původním jazyce
The resolution of a drawing plays a crucial role when defining criteria for its quality. In the past, grid resolution, edge-length resolution, angular resolution and crossing resolution have been investigated. In this paper, we investigate the stub resolution, a recently introduced criterion for nonplanar drawings. A crossed edge is divided into parts, called stubs, which should not be too short for the sake of readability. Thus, the stub resolution of a drawing is defined as the minimum ratio between the length of a stub and the length of the entire edge, over all the edges of the drawing. We consider 1-planar graphs and we explore scenarios in which near optimal stub resolution, i.e. arbitrarily close to 1/2, can be obtained in drawings with zero, one, or two bends per edge, as well as further resolution criteria, such as angular and crossing resolution. In particular, our main contributions are as follows: (i) Every 1-planar graph with independent crossing edges has a straight-line drawing with near optimal stub resolution; (ii) Every 1-planar graph has a 1-bend drawing with near optimal stub resolution.
Název v anglickém jazyce
The Stub Resolution of 1-Planar Graphs
Popis výsledku anglicky
The resolution of a drawing plays a crucial role when defining criteria for its quality. In the past, grid resolution, edge-length resolution, angular resolution and crossing resolution have been investigated. In this paper, we investigate the stub resolution, a recently introduced criterion for nonplanar drawings. A crossed edge is divided into parts, called stubs, which should not be too short for the sake of readability. Thus, the stub resolution of a drawing is defined as the minimum ratio between the length of a stub and the length of the entire edge, over all the edges of the drawing. We consider 1-planar graphs and we explore scenarios in which near optimal stub resolution, i.e. arbitrarily close to 1/2, can be obtained in drawings with zero, one, or two bends per edge, as well as further resolution criteria, such as angular and crossing resolution. In particular, our main contributions are as follows: (i) Every 1-planar graph with independent crossing edges has a straight-line drawing with near optimal stub resolution; (ii) Every 1-planar graph has a 1-bend drawing with near optimal stub resolution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-19158S" target="_blank" >GA18-19158S: Algoritmické, strukturální a složitostní aspekty geometrických a dalších konfigurací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
WALCOM: Algorithms and Computation - 14th International Conference, WALCOM 2020
ISBN
978-3-030-39880-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
170-182
Název nakladatele
Springer Nature Switzerland
Místo vydání
Cham
Místo konání akce
Singapur
Datum konání akce
31. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—