The Stub Resolution of 1-planar Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438466" target="_blank" >RIV/00216208:11320/21:10438466 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y4Ox-xaTRJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y4Ox-xaTRJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7155/jgaa.00575" target="_blank" >10.7155/jgaa.00575</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Stub Resolution of 1-planar Graphs
Popis výsledku v původním jazyce
The resolution of a drawing plays a crucial role when defining criteria for its quality. In the past, grid resolution, edge-length resolution, angular resolution and crossing resolution have been investigated. In this paper, we investigate the stub resolution, a recently introduced criterion for nonplanar drawings. Intersection points divide edges into parts, called stubs, which should not be too short for the sake of readability. Thus, the stub resolution of a drawing is defined as the minimum ratio between the length of a stub and the length of the entire edge, over all the edges of the drawing. We consider 1-planar graphs and we explore scenarios in which near optimal stub resolution, i.e., arbitrarily close to 1/2, can be obtained in drawings with zero, one or two bends per edge, as well as further resolution criteria, such as angular and crossing resolution. In particular, our main contributions are as follows: (i) Every IC-planar graph, i.e., every 1-planar graph with independent crossing edges, has a straight-line drawing with near optimal stub resolution; (ii) Every 1-planar graph has a 1-bend drawing with near optimal stub resolution.
Název v anglickém jazyce
The Stub Resolution of 1-planar Graphs
Popis výsledku anglicky
The resolution of a drawing plays a crucial role when defining criteria for its quality. In the past, grid resolution, edge-length resolution, angular resolution and crossing resolution have been investigated. In this paper, we investigate the stub resolution, a recently introduced criterion for nonplanar drawings. Intersection points divide edges into parts, called stubs, which should not be too short for the sake of readability. Thus, the stub resolution of a drawing is defined as the minimum ratio between the length of a stub and the length of the entire edge, over all the edges of the drawing. We consider 1-planar graphs and we explore scenarios in which near optimal stub resolution, i.e., arbitrarily close to 1/2, can be obtained in drawings with zero, one or two bends per edge, as well as further resolution criteria, such as angular and crossing resolution. In particular, our main contributions are as follows: (i) Every IC-planar graph, i.e., every 1-planar graph with independent crossing edges, has a straight-line drawing with near optimal stub resolution; (ii) Every 1-planar graph has a 1-bend drawing with near optimal stub resolution.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-19158S" target="_blank" >GA18-19158S: Algoritmické, strukturální a složitostní aspekty geometrických a dalších konfigurací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Algorithms and Applications
ISSN
1526-1719
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
625-642
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85121727214