Scheduling meets n-fold integer programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386756" target="_blank" >RIV/00216208:11320/18:10386756 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10951-017-0550-0" target="_blank" >https://doi.org/10.1007/s10951-017-0550-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10951-017-0550-0" target="_blank" >10.1007/s10951-017-0550-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scheduling meets n-fold integer programming
Popis výsledku v původním jazyce
Scheduling problems are fundamental in combinatorial optimization. Much work has been done on approximation algorithms for NP-hard cases, but relatively little is known about exact solutions when some part of the input is a fixed parameter. In this paper, we continue this study and show that several additional cases of fundamental scheduling problems are fixed-parameter tractable for some natural parameters. Our main tool is n-fold integer programming, a recent variable dimension technique which we believe to be highly relevant for the parameterized complexity community. This paper serves to showcase and highlight this technique. Specifically, we show the following four scheduling problems to be fixed-parameter tractable, where pmax is the maximum processing time of a job and wmax is the maximum weight of a job: Makespan minimization on uniformly related machines (Q parallel to C-max) parameterized by p(max), Makespan minimization on unrelated machines (R parallel to C-max) parameterized by pmax and the number of kinds of machines (defined later), Sum of weighted completion times minimization on unrelated machines parameterized by pmax + wmax and the number of kinds of machines, The same problem, parameterized by the number of distinct job times and the number of machines.
Název v anglickém jazyce
Scheduling meets n-fold integer programming
Popis výsledku anglicky
Scheduling problems are fundamental in combinatorial optimization. Much work has been done on approximation algorithms for NP-hard cases, but relatively little is known about exact solutions when some part of the input is a fixed parameter. In this paper, we continue this study and show that several additional cases of fundamental scheduling problems are fixed-parameter tractable for some natural parameters. Our main tool is n-fold integer programming, a recent variable dimension technique which we believe to be highly relevant for the parameterized complexity community. This paper serves to showcase and highlight this technique. Specifically, we show the following four scheduling problems to be fixed-parameter tractable, where pmax is the maximum processing time of a job and wmax is the maximum weight of a job: Makespan minimization on uniformly related machines (Q parallel to C-max) parameterized by p(max), Makespan minimization on unrelated machines (R parallel to C-max) parameterized by pmax and the number of kinds of machines (defined later), Sum of weighted completion times minimization on unrelated machines parameterized by pmax + wmax and the number of kinds of machines, The same problem, parameterized by the number of distinct job times and the number of machines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Scheduling
ISSN
1094-6136
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
493-503
Kód UT WoS článku
000444590500002
EID výsledku v databázi Scopus
2-s2.0-85030569513