Complexity of Scheduling Few Types of Jobs on Related and Unrelated Machines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421992" target="_blank" >RIV/00216208:11320/20:10421992 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ISAAC.2020.18" target="_blank" >https://doi.org/10.4230/LIPIcs.ISAAC.2020.18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2020.18" target="_blank" >10.4230/LIPIcs.ISAAC.2020.18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of Scheduling Few Types of Jobs on Related and Unrelated Machines
Popis výsledku v původním jazyce
The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a norm of the load vector, are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these problems are in general NP-hard, much attention has been given to the regime where there is only a small number k of job types, but possibly the number of jobs n is large; this is the few job types, high-multiplicity regime. Despite many positive results, the hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related machines (Q|HM|C_max) is NP-hard already with 6 job types, and that the related Cutting Stock problem is NP-hard already with 8 item types. For the more general unrelated machines model (R|HM|C_max), we show that if either the largest job size p_max, or the number of jobs n are polynomially bounded in the instance size |I|, there are algorithms with complexity |I|^poly(k). Our main result is that this is unlikely to be improved, because Q||C_max is W[1]-hard parameterized by k already when n, p_max, and the numbers describing the speeds are polynomial in |I|; the same holds for R|HM|C_max (without speeds) when the job sizes matrix has rank 2. Our positive and negative results also extend to the objectives ????1-norm minimization of the load vector and, partially, sum of weighted completion times N-ARY SUMMATION w_j C_j. Along the way, we answer affirmatively the question whether makespan minimization on identical machines (P||C_max) is fixed-parameter tractable parameterized by k, extending our understanding of this fundamental problem. Together with our hardness results for Q||C_max this implies that the complexity of P|HM|C_max is the only remaining open case.
Název v anglickém jazyce
Complexity of Scheduling Few Types of Jobs on Related and Unrelated Machines
Popis výsledku anglicky
The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a norm of the load vector, are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these problems are in general NP-hard, much attention has been given to the regime where there is only a small number k of job types, but possibly the number of jobs n is large; this is the few job types, high-multiplicity regime. Despite many positive results, the hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related machines (Q|HM|C_max) is NP-hard already with 6 job types, and that the related Cutting Stock problem is NP-hard already with 8 item types. For the more general unrelated machines model (R|HM|C_max), we show that if either the largest job size p_max, or the number of jobs n are polynomially bounded in the instance size |I|, there are algorithms with complexity |I|^poly(k). Our main result is that this is unlikely to be improved, because Q||C_max is W[1]-hard parameterized by k already when n, p_max, and the numbers describing the speeds are polynomial in |I|; the same holds for R|HM|C_max (without speeds) when the job sizes matrix has rank 2. Our positive and negative results also extend to the objectives ????1-norm minimization of the load vector and, partially, sum of weighted completion times N-ARY SUMMATION w_j C_j. Along the way, we answer affirmatively the question whether makespan minimization on identical machines (P||C_max) is fixed-parameter tractable parameterized by k, extending our understanding of this fundamental problem. Together with our hardness results for Q||C_max this implies that the complexity of P|HM|C_max is the only remaining open case.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-173-3
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
17
Strana od-do
1-17
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Hong Kong
Datum konání akce
14. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—