Robust recursive estimation for financial time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386862" target="_blank" >RIV/00216208:11320/18:10386862 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust recursive estimation for financial time series
Popis výsledku v původním jazyce
The generalized autoregressive conditional heteroscedasticity (GARCH) process is a particular modelling scheme, which is capable of forecasting the current level of volatility of financial time series. Recently, recursive estimation methods suitable for this class of stochastic processes have been introduced in the literature. They undoubtedly represent attractive alternatives to the standard non-recursive estimation procedures with many practical applications. It is truly advantageous to adopt numerically effective estimation techniques that can estimate and control such models in real time. However, abnormal observations (outliers) may occur in data. They may be caused by many reasons, e.g. by additive errors, measurement failures or management actions. Exceptional data points will influence the model estimation considerably if no specific action is taken. The aim of this contribution is to propose and examine a robust recursive estimation algorithm suitable for GARCH models. It seems to be useful for various financial time series, in particular for (high-frequency) financial returns contaminated by additive outliers. The introduced algorithm can be effective in the risk control and regulation when the prediction of volatility is the main concern since it distinguishes and corrects outlaid bursts of volatility. Real data examples are presented.
Název v anglickém jazyce
Robust recursive estimation for financial time series
Popis výsledku anglicky
The generalized autoregressive conditional heteroscedasticity (GARCH) process is a particular modelling scheme, which is capable of forecasting the current level of volatility of financial time series. Recently, recursive estimation methods suitable for this class of stochastic processes have been introduced in the literature. They undoubtedly represent attractive alternatives to the standard non-recursive estimation procedures with many practical applications. It is truly advantageous to adopt numerically effective estimation techniques that can estimate and control such models in real time. However, abnormal observations (outliers) may occur in data. They may be caused by many reasons, e.g. by additive errors, measurement failures or management actions. Exceptional data points will influence the model estimation considerably if no specific action is taken. The aim of this contribution is to propose and examine a robust recursive estimation algorithm suitable for GARCH models. It seems to be useful for various financial time series, in particular for (high-frequency) financial returns contaminated by additive outliers. The introduced algorithm can be effective in the risk control and regulation when the prediction of volatility is the main concern since it distinguishes and corrects outlaid bursts of volatility. Real data examples are presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00676S" target="_blank" >GA17-00676S: Dynamické modely rizika ve financích a pojišťovnictví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings
ISBN
978-80-87990-14-8
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
563-571
Název nakladatele
Melandrium
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
6. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000455809400056