A (1+epsilon)-EMBEDDING OF LOW HIGHWAY DIMENSION GRAPHS INTO BOUNDED TREEWIDTH GRAPHS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386940" target="_blank" >RIV/00216208:11320/18:10386940 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/16M1067196" target="_blank" >https://doi.org/10.1137/16M1067196</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/16M1067196" target="_blank" >10.1137/16M1067196</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A (1+epsilon)-EMBEDDING OF LOW HIGHWAY DIMENSION GRAPHS INTO BOUNDED TREEWIDTH GRAPHS
Popis výsledku v původním jazyce
Graphs with bounded highway dimension were introduced by Abraham et al. [Proceedings of SODA 2010, pp. 782-793] as a model of transportation networks. We show that any such graph can be embedded into a distribution over bounded treewidth graphs with arbitrarily small distortion. More concretely, given a weighted graph G = (V, E) of constant highway dimension, we show how to randomly compute a weighted graph H = (V, E') that distorts shortest path distances of G by at most a 1 + E factor in expectation, and whose treewidth is polylogarithmic in the aspect ratio of G. Our probabilistic embedding implies quasi -polynomial time approximation schemes for a number of optimization problems that naturally arise in transportation networks, including Travelling Salesman, Steiner Tree, and Facility Location. To construct our embedding for low highway dimension graphs we extend Talwar's [Proceedings of STOC 2004, pp. 281-290] embedding of low doubling dimension metrics into bounded treewidth graphs, which generalizes known results for Euclidean metrics. We add several nontrivial ingredients to Talwar's techniques, and in particular thoroughly analyze the structure of low highway dimension graphs. Thus we demonstrate that the geometric toolkit used for Euclidean metrics extends beyond the class of low doubling metrics.
Název v anglickém jazyce
A (1+epsilon)-EMBEDDING OF LOW HIGHWAY DIMENSION GRAPHS INTO BOUNDED TREEWIDTH GRAPHS
Popis výsledku anglicky
Graphs with bounded highway dimension were introduced by Abraham et al. [Proceedings of SODA 2010, pp. 782-793] as a model of transportation networks. We show that any such graph can be embedded into a distribution over bounded treewidth graphs with arbitrarily small distortion. More concretely, given a weighted graph G = (V, E) of constant highway dimension, we show how to randomly compute a weighted graph H = (V, E') that distorts shortest path distances of G by at most a 1 + E factor in expectation, and whose treewidth is polylogarithmic in the aspect ratio of G. Our probabilistic embedding implies quasi -polynomial time approximation schemes for a number of optimization problems that naturally arise in transportation networks, including Travelling Salesman, Steiner Tree, and Facility Location. To construct our embedding for low highway dimension graphs we extend Talwar's [Proceedings of STOC 2004, pp. 281-290] embedding of low doubling dimension metrics into bounded treewidth graphs, which generalizes known results for Euclidean metrics. We add several nontrivial ingredients to Talwar's techniques, and in particular thoroughly analyze the structure of low highway dimension graphs. Thus we demonstrate that the geometric toolkit used for Euclidean metrics extends beyond the class of low doubling metrics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
1667-1704
Kód UT WoS článku
000443195600014
EID výsledku v databázi Scopus
2-s2.0-85053622675