Target Set Selection in Dense Graph Classes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386996" target="_blank" >RIV/00216208:11320/18:10386996 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/18:00326433
Výsledek na webu
<a href="http://drops.dagstuhl.de/opus/volltexte/2018/9966/pdf/LIPIcs-ISAAC-2018-18.pdf" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2018/9966/pdf/LIPIcs-ISAAC-2018-18.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.18" target="_blank" >10.4230/LIPIcs.ISAAC.2018.18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Target Set Selection in Dense Graph Classes
Popis výsledku v původním jazyce
In this paper we study the Target Set Selection problem from a parameterized complexity perspective. Here for a given graph and a threshold for each vertex the task is to find a set of vertices (called a target set) to activate at the beginning which activates the whole graph during the following iterative process. A vertex outside the active set becomes active if the number of so far activated vertices in its neighborhood is at least its threshold. We give two parameterized algorithms for a special case where each vertex has the threshold set to the half of its neighbors (the so called Majority Target Set Selection problem) for parameterizations by the neighborhood diversity and the twin cover number of the input graph. We complement these results from the negative side. We give a hardness proof for the Majority Target Set Selection problem when parameterized by (a restriction of) the modular-width - a natural generalization of both previous structural parameters. We show that the Target Set Selection problem parameterized by the neighborhood diversity when there is no restriction on the thresholds is W[1]-hard.
Název v anglickém jazyce
Target Set Selection in Dense Graph Classes
Popis výsledku anglicky
In this paper we study the Target Set Selection problem from a parameterized complexity perspective. Here for a given graph and a threshold for each vertex the task is to find a set of vertices (called a target set) to activate at the beginning which activates the whole graph during the following iterative process. A vertex outside the active set becomes active if the number of so far activated vertices in its neighborhood is at least its threshold. We give two parameterized algorithms for a special case where each vertex has the threshold set to the half of its neighbors (the so called Majority Target Set Selection problem) for parameterizations by the neighborhood diversity and the twin cover number of the input graph. We complement these results from the negative side. We give a hardness proof for the Majority Target Set Selection problem when parameterized by (a restriction of) the modular-width - a natural generalization of both previous structural parameters. We show that the Target Set Selection problem parameterized by the neighborhood diversity when there is no restriction on the thresholds is W[1]-hard.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
29th International Symposium on Algorithms and Computation (ISAAC 2018)
ISBN
978-3-95977-094-1
ISSN
1868-8969
e-ISSN
neuvedeno
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Jiaoxi
Datum konání akce
16. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—