Target Set Selection in Dense Graph Classes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453196" target="_blank" >RIV/00216208:11320/22:10453196 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/22:00358106
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=erc0z2H5q6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=erc0z2H5q6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1337624" target="_blank" >10.1137/20M1337624</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Target Set Selection in Dense Graph Classes
Popis výsledku v původním jazyce
In this paper, we study the TARGET SET SELECTION problem from a parameterized complexity perspective. Here for a given graph and a threshold for each vertex, the task is to find a set of vertices (called a target set) that activates the whole graph during the following iterative process. A vertex outside the active set becomes active if the number of so far activated vertices in its neighborhood is at least its threshold. We give two parameterized algorithms for a special case where each vertex has the threshold set to half of its neighbors (the so-called MAJORITY TARGET SET SELECTION problem) for parameterizations by the neighborhood diversity and the twin cover number of the input graph. We complement these results from the negative side. We give a hardness proof for the MAJORITY TARGET SET SELECTION problem when parameterized by (a restriction of) the modular-width -a natural generalization of both previous structural parameters. We also show the TARGET SET SELECTION problem parameterized by the neighborhood diversity or by the twin cover number is W[1]-hard when there is no restriction on the thresholds.
Název v anglickém jazyce
Target Set Selection in Dense Graph Classes
Popis výsledku anglicky
In this paper, we study the TARGET SET SELECTION problem from a parameterized complexity perspective. Here for a given graph and a threshold for each vertex, the task is to find a set of vertices (called a target set) that activates the whole graph during the following iterative process. A vertex outside the active set becomes active if the number of so far activated vertices in its neighborhood is at least its threshold. We give two parameterized algorithms for a special case where each vertex has the threshold set to half of its neighbors (the so-called MAJORITY TARGET SET SELECTION problem) for parameterizations by the neighborhood diversity and the twin cover number of the input graph. We complement these results from the negative side. We give a hardness proof for the MAJORITY TARGET SET SELECTION problem when parameterized by (a restriction of) the modular-width -a natural generalization of both previous structural parameters. We also show the TARGET SET SELECTION problem parameterized by the neighborhood diversity or by the twin cover number is W[1]-hard when there is no restriction on the thresholds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
536-572
Kód UT WoS článku
000778502000027
EID výsledku v databázi Scopus
—