Parabolic conformally symplectic structures I; definition and distinguished connections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387195" target="_blank" >RIV/00216208:11320/18:10387195 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1515/forum-2017-0018" target="_blank" >https://doi.org/10.1515/forum-2017-0018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2017-0018" target="_blank" >10.1515/forum-2017-0018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parabolic conformally symplectic structures I; definition and distinguished connections
Popis výsledku v původním jazyce
We introduce a class of first order G-structures, each of which has an underlying almost conformally symplectic structure. There is one such structure for each real simple Lie algebra which is not of type C-n and admits a contact grading. We show that a structure of each of these types on a smooth manifold M determines a canonical compatible linear connection on the tangent bundle TM. This connection is characterized by a normalization condition on its torsion. The algebraic background for this result is proved using Kostant's theorem on Lie algebra cohomology. For each type, we give an explicit description of both the geometric structure and the normalization condition. In particular, the torsion of the canonical connection naturally splits into two components, one of which is exactly the obstruction to the underlying structure being conformally symplectic. This article is the first in a series aiming at a construction of differential complexes naturally associated to these geometric structures.
Název v anglickém jazyce
Parabolic conformally symplectic structures I; definition and distinguished connections
Popis výsledku anglicky
We introduce a class of first order G-structures, each of which has an underlying almost conformally symplectic structure. There is one such structure for each real simple Lie algebra which is not of type C-n and admits a contact grading. We show that a structure of each of these types on a smooth manifold M determines a canonical compatible linear connection on the tangent bundle TM. This connection is characterized by a normalization condition on its torsion. The algebraic background for this result is proved using Kostant's theorem on Lie algebra cohomology. For each type, we give an explicit description of both the geometric structure and the normalization condition. In particular, the torsion of the canonical connection naturally splits into two components, one of which is exactly the obstruction to the underlying structure being conformally symplectic. This article is the first in a series aiming at a construction of differential complexes naturally associated to these geometric structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forum Mathematicum
ISSN
0933-7741
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
733-751
Kód UT WoS článku
000430908100011
EID výsledku v databázi Scopus
2-s2.0-85037819364