Parabolic conformally symplectic structures III; Invariant differential operators and complexes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403841" target="_blank" >RIV/00216208:11320/19:10403841 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zpw-iLDuIn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zpw-iLDuIn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25537/dm.2019v24.2203-2240" target="_blank" >10.25537/dm.2019v24.2203-2240</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parabolic conformally symplectic structures III; Invariant differential operators and complexes
Popis výsledku v původním jazyce
This is the last part of a series of articles on a family of geometric structures (PACS-structures) which all have an underlying almost conformally symplectic structure. While the first part of the series was devoted to the general study of these structures, the second part focused on the case that the underlying structure is conformally symplectic (PCS-structures). In that case, we obtained a close relation to parabolic contact structures via a concept of parabolic contactification. It was also shown that special symplectic connections (and thus all connections of exotic symplectic holonomy) arise as the canonical connection of such a structure. In this last part, we use parabolic contactifications and constructions related to Bernstein-Gelfand-Gelfand (BGG) sequences for parabolic contact structures, to construct sequences of differential operators naturally associated to a PCS-structure. In particular, this gives rise to a large family of complexes of differential operators associated to a special symplectic connection. In some cases, large families of complexes for more general instances of PCS-structures are obtained.
Název v anglickém jazyce
Parabolic conformally symplectic structures III; Invariant differential operators and complexes
Popis výsledku anglicky
This is the last part of a series of articles on a family of geometric structures (PACS-structures) which all have an underlying almost conformally symplectic structure. While the first part of the series was devoted to the general study of these structures, the second part focused on the case that the underlying structure is conformally symplectic (PCS-structures). In that case, we obtained a close relation to parabolic contact structures via a concept of parabolic contactification. It was also shown that special symplectic connections (and thus all connections of exotic symplectic holonomy) arise as the canonical connection of such a structure. In this last part, we use parabolic contactifications and constructions related to Bernstein-Gelfand-Gelfand (BGG) sequences for parabolic contact structures, to construct sequences of differential operators naturally associated to a PCS-structure. In particular, this gives rise to a large family of complexes of differential operators associated to a special symplectic connection. In some cases, large families of complexes for more general instances of PCS-structures are obtained.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01171S" target="_blank" >GA17-01171S: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Documenta Mathematica
ISSN
1431-0643
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
38
Strana od-do
2203-2240
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85078065710