Parabolic conformally symplectic structures II: parabolic contactification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387249" target="_blank" >RIV/00216208:11320/18:10387249 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10231-017-0719-3" target="_blank" >https://doi.org/10.1007/s10231-017-0719-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-017-0719-3" target="_blank" >10.1007/s10231-017-0719-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parabolic conformally symplectic structures II: parabolic contactification
Popis výsledku v původním jazyce
Parabolic almost conformally symplectic structures were introduced in the first part of this series of articles as a class of geometric structures which have an underlying almost conformally symplectic structure. If this underlying structure is conformally symplectic, then one obtains a PCS-structure. In the current article, we relate PCS-structures to parabolic contact structures. Starting from a parabolic contact structure with a transversal infinitesimal automorphism, we first construct a natural PCS-structure on any local leaf space of the corresponding foliation. Then we develop a parabolic version of contactification to show that any PCS-structure can be locally realized (uniquely up to isomorphism) in this way. In the second part of the paper, these results are extended to an analogous correspondence between contact projective structures and so-called conformally Fedosov structures. The developments in this article provide the technical background for a construction of sequences and complexes of differential operators which are naturally associated to PCS-structures by pushing down BGG sequences on parabolic contact structures. This is the topic of the third part of this series of articles.
Název v anglickém jazyce
Parabolic conformally symplectic structures II: parabolic contactification
Popis výsledku anglicky
Parabolic almost conformally symplectic structures were introduced in the first part of this series of articles as a class of geometric structures which have an underlying almost conformally symplectic structure. If this underlying structure is conformally symplectic, then one obtains a PCS-structure. In the current article, we relate PCS-structures to parabolic contact structures. Starting from a parabolic contact structure with a transversal infinitesimal automorphism, we first construct a natural PCS-structure on any local leaf space of the corresponding foliation. Then we develop a parabolic version of contactification to show that any PCS-structure can be locally realized (uniquely up to isomorphism) in this way. In the second part of the paper, these results are extended to an analogous correspondence between contact projective structures and so-called conformally Fedosov structures. The developments in this article provide the technical background for a construction of sequences and complexes of differential operators which are naturally associated to PCS-structures by pushing down BGG sequences on parabolic contact structures. This is the topic of the third part of this series of articles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01171S" target="_blank" >GA17-01171S: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
—
Svazek periodika
197
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
25
Strana od-do
1175-1199
Kód UT WoS článku
000439330700008
EID výsledku v databázi Scopus
2-s2.0-85037609024